ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power Transistors

NPN Silicon DPAK For Surface Mount Applications

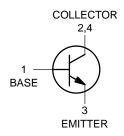
Designed for high-gain audio amplifier applications.

Features

- High DC Current Gain
- Low Collector-Emitter Saturation Voltage
- High Current-Gain Bandwidth Product
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	V _{CB}	50	Vdc
Collector–Emitter Voltage	V _{CEO}	50	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current – Continuous	I _C	2	Adc
Collector Current – Peak	I _{CM}	3	Adc
Base Current	I _B	0.4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	15 0.1	W W/°C
Total Device Dissipation @ T _A = 25°C* Derate above 25°C	P _D	1.68 0.011	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C
ESD – Human Body Model	НВМ	3B	V
ESD – Machine Model	MM	С	V


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

SILICON POWER TRANSISTORS 2 AMPERES 50 VOLTS 15 WATTS

CASE 369C STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Device

ORDERING INFORMATION

Device	Package	Shipping [†]
NJD2873T4G	DPAK (Pb-Free)	2,500 Units / Reel
NJVNJD2873T4G	DPAK (Pb-Free)	2,500 Units / Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Case Junction-to-Ambient (Note 1)	$egin{array}{c} {\sf R}_{ heta {\sf JC}} \ {\sf R}_{ heta {\sf JA}} \end{array}$	10 89.3	°C/W

^{1.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (Note 2) $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	50	-	Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0)	I _{CBO}	-	100	nAdc
Emitter Cutoff Current (V _{BE} = 5 Vdc, I _C = 0)	I _{EBO}	-	100	nAdc
ON CHARACTERISTICS				
DC Current Gain (Note 2) $ \begin{array}{l} (I_C = 0.5 \text{ A, V}_{CE} = 2 \text{ V}) \\ (I_C = 2 \text{ Adc, V}_{CE} = 2 \text{ Vdc}) \\ (I_C = 0.75 \text{ Adc, V}_{CE} = 1.6 \text{ Vdc, } -40^{\circ}\text{C} \leq \text{T}_J \leq 150^{\circ}\text{C}) \end{array} $	h _{FE}	120 40 80	360 - 360	-
Collector–Emitter Saturation Voltage (Note 2) (I _C = 1 A, I _B = 0.05 A)	V _{CE(sat)}	-	0.3	Vdc
Base–Emitter Saturation Voltage (Note 2) (I _C = 1 A, I _B = 0.05 Adc)	V _{BE(sat)}	-	1.2	Vdc
Base–Emitter On Voltage (Note 2) $ \begin{aligned} &(I_C=1 \text{ Adc, } V_{CE}=2 \text{ Vdc)} \\ &(I_C=0.75 \text{ Adc, } V_{CE}=1.6 \text{ Vdc, } -40^{\circ}\text{C} \leq T_J \leq 150^{\circ}\text{C}) \end{aligned} $	V _{BE(on)}	- -	1.2 0.95	Vdc
DYNAMIC CHARACTERISTICS				
Current–Gain – Bandwidth Product (Note 3) (I _C = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)	f _T	65	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	C _{ob}	-	80	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2%.

3. $f_T = |h_{fe}| \bullet f_{test}$.

TYPICAL CHARACTERISTICS

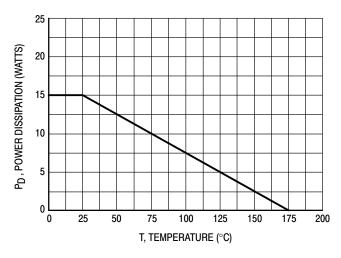


Figure 1. Power Derating

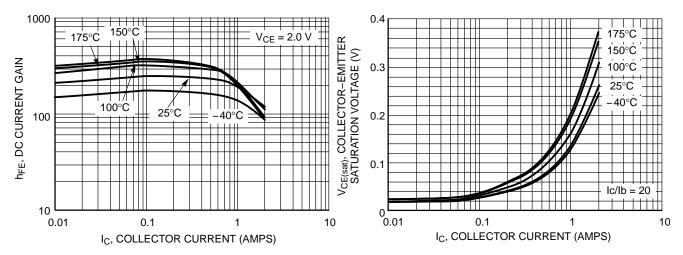


Figure 2. DC Current Gain

Figure 3. Collector-Emitter Saturation Voltage

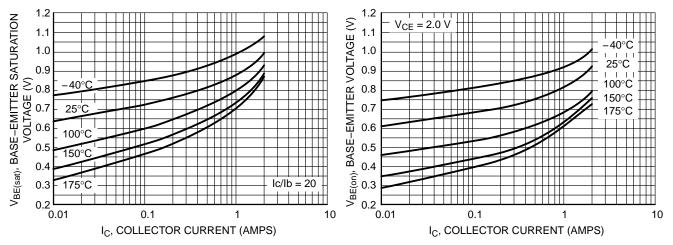


Figure 4. Base-Emitter Saturation Voltage

Figure 5. Base-Emitter Voltage

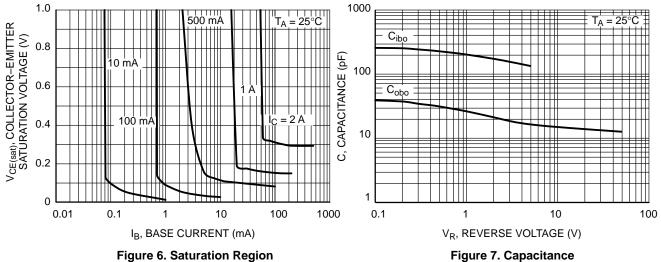


Figure 7. Capacitance

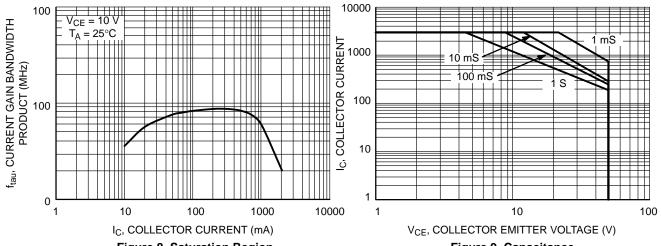


Figure 8. Saturation Region

Figure 9. Capacitance

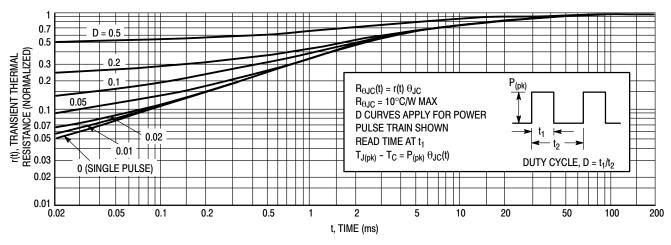
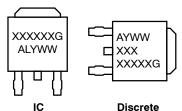


Figure 10. Thermal Response

DETAIL A ROTATED 90° CW

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F**

DATE 21 JUL 2015

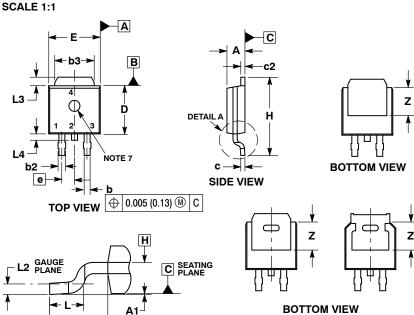

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

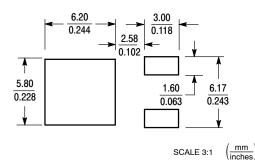
	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*


XXXXXX = Device Code

= Assembly Location Α

L = Wafer Lot Υ = Year


WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

STYLE 1: STYLE 2: STYLE 3: STYLE 4: STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. BASE 2. COLLECTOR 3. EMITTER PIN 1. GATE 2. DRAIN PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3. GATE SOURCE 3. ANODE 4. CATHODE 4. COLLECTOR 4. DRAIN 4. ANODE 4. ANODE STYLE 6: STYLE 7: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. GATE 2. COLLECTOR PIN 1. N/C 2. CATHODE PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3. GATE 4. MT2 3. EMITTER 4. COLLECTOR 3. ANODE 4. CATHODE 3. RESISTOR ADJUST 4. CATHODE 3. CATHODE 4. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ALTERNATE CONSTRUCTIONS

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven earnathy, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond