

# PD85006-E

# RF power transistor, LdmoST plastic family N-channel enhancement-mode lateral MOSFETs

## Features

- Excellent thermal stability
- Common source configuration
- Broadband performances:
   P<sub>OUT</sub> = 6 W with 15 dB gain @ 870 MHz/13.6 V
- Plastic package
- ESD protection
- In compliance with the 2002/95/EC european directive

# Description

The PD85006-E is a common source N-channel, enhancement-mode lateral field-effect RF power transistor. It is designed for high gain, broadband commercial and industrial applications. It operates at 13.6 V in common source mode at frequencies of up to 1 GHz. PD85006-E boasts the excellent gain, linearity and reliability of ST's latest LDMOS technology mounted in the first true SMD plastic RF power package.

PowerSO-10RF's superior linearity performance makes it an ideal solution for mobile radio applications.

The PowerSO-10 plastic package, designed to offer high reliability, is the first ST JEDEC approved, high power SMD package. It has been specially optimized for RF needs and offers excellent RF performance and ease of assembly. Mounting recommendations are available in www.st.com/rf (search for AN1294).

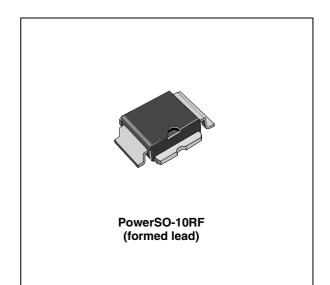
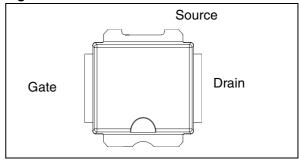




Figure 1. Pin connections



| Order codes | Packages                   | Packaging     |
|-------------|----------------------------|---------------|
| PD85006-E   | PowerSO-10RF (formed lead) | Tube          |
| PD85006TR-E | PowerSO-10RF (formed lead) | Tape and reel |

August 2010

Doc ID 16208 Rev 3

www.st.com

# Contents

| 1 | Electi | rical data                     | 3 |
|---|--------|--------------------------------|---|
|   | 1.1    | Maximum ratings                | 3 |
|   | 1.2    | Thermal data                   | 3 |
| 2 | Electi | rical characteristics          | 4 |
|   | 2.1    | Static                         | 4 |
|   | 2.2    | Dynamic                        | 4 |
|   | 2.3    | ESD protection characteristics | 4 |
| 3 | Impeo  | dances                         | 5 |
| 4 | DC cu  | urves                          | 6 |
| 5 | RF cu  | ırves                          | B |
| 6 | Schei  | matic and bill of material 10  | 0 |
| 7 | Packa  | age mechanical data 12         | 2 |
| 8 | Revis  | ion history                    | 6 |



# 1 Electrical data

# 1.1 Maximum ratings

| Symbol               | Parameter                           | Value       | Unit |  |
|----------------------|-------------------------------------|-------------|------|--|
| V <sub>(BR)DSS</sub> | Drain-source voltage                | 40          | V    |  |
| V <sub>GS</sub>      | Gate-source voltage                 | -0.5 to +15 | V    |  |
| I <sub>D</sub>       | Drain current                       | 2           | Α    |  |
| P <sub>DISS</sub>    | Power dissipation (@ $T_C = 70$ °C) | 36.5        | W    |  |
| TJ                   | Max. operating junction temperature | 165         | °C   |  |
| T <sub>STG</sub>     | Storage temperature                 | -65 to +150 | °C   |  |

### Table 2. Absolute maximum ratings $(T_{CASE} = 25 \text{ °C})$

## 1.2 Thermal data

### Table 3. Thermal data

| Symbol            | Parameter                          | Value | Unit |
|-------------------|------------------------------------|-------|------|
| R <sub>thJC</sub> | Junction - case thermal resistance | 2.6   | °C/W |



# 2 Electrical characteristics

T<sub>CASE</sub> = +25 °C

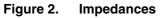
## 2.1 Static

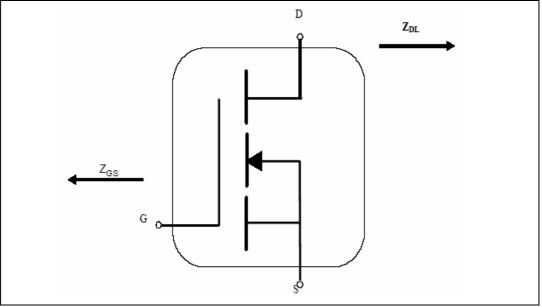
| Table 4.            | Static                   |                          |           |     |      |     |      |
|---------------------|--------------------------|--------------------------|-----------|-----|------|-----|------|
| Symbol              |                          | Test conditions          |           | Min | Тур  | Мах | Unit |
| I <sub>DSS</sub>    | $V_{GS} = 0V$            | $V_{DS} = 25 V$          |           |     |      | 1   | μA   |
| I <sub>GSS</sub>    | $V_{GS} = 5 V$           | $V_{DS} = 0 V$           |           |     |      | 1   | μA   |
| V <sub>GS(Q)</sub>  | V <sub>DS</sub> = 13.6 V | I <sub>D</sub> = 200 mA  |           |     | 4    |     | V    |
| V <sub>DS(ON)</sub> | V <sub>GS</sub> = 10 V   | I <sub>D</sub> = 0.25 A  |           | -   | 0.27 |     | V    |
| C <sub>ISS</sub>    | $V_{GS} = 0V$            | V <sub>DS</sub> = 13.6 V | f = 1 MHz |     | 16   |     | pF   |
| C <sub>OSS</sub>    | $V_{GS} = 0V$            | V <sub>DS</sub> = 13.6 V | f = 1 MHz |     | 14   |     | pF   |
| C <sub>RSS</sub>    | $V_{GS} = 0V$            | V <sub>DS</sub> = 13.6 V | f = 1 MHz |     | 1.1  |     | pF   |

## 2.2 Dynamic

Table 5. Dynamic

| Symbol           | Test conditions                                                                     | Min  | Тур | Max | Unit     |
|------------------|-------------------------------------------------------------------------------------|------|-----|-----|----------|
| P <sub>OUT</sub> | $V_{DD}$ = 13.6 V, $I_{DQ}$ = 200 mA, $P_{IN}$ = 0.1 W, f = 870 MHz                 | 5    | 6   |     | W        |
| G <sub>P</sub>   | $V_{DD}$ = 13.6 V, $I_{DQ}$ = 200 mA, $P_{OUT}$ = 5 W, f = 870 MHz                  | 15   | 17  | _   | dB       |
| h <sub>D</sub>   | $V_{DD}$ = 13.6 V, $I_{DQ}$ = 200 mA, $P_{OUT}$ = 5 W, f = 870 MHz                  | 55   | 63  |     | %        |
| Load<br>mismatch | $V_{DD}$ = 13.6 V, $I_{DQ}$ = 200 mA, $P_{OUT}$ = 5 W, f = 870 MHz All phase angles | 20:1 |     |     | VSW<br>R |


# 2.3 ESD protection characteristics


### Table 6. ESD protection characteristics

| Test conditions  | Class |
|------------------|-------|
| Human body model | 2     |
| Machine model    | M3    |



# 3 Impedances





### Table 7.Broadband impedances

| F(MHz) | Z <sub>GS</sub> | Z <sub>DL</sub> |
|--------|-----------------|-----------------|
| 860    | 2.66+ j 4.28    | 6.23+ j 5.71    |
| 880    | 2.81+ j 4.35    | 6.46+ j 6.20    |
| 900    | 2.88+ j 4.34    | 6.73 + j 6.66   |
| 920    | 2.87+ j 4.25    | 7.06+ j 7.06    |
| 940    | 2.68+ j 4.20    | 7.40+ j 7.45    |
| 960    | 2.39+ j 4.20    | 7.80+ j 7.75    |



# 4 DC curves

Figure 3. Output power and efficiency vs. Figure 4. frequency 13.6 V / 200 mA / Pin = 21 dBm

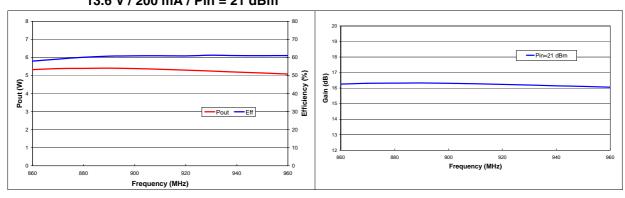
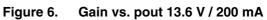
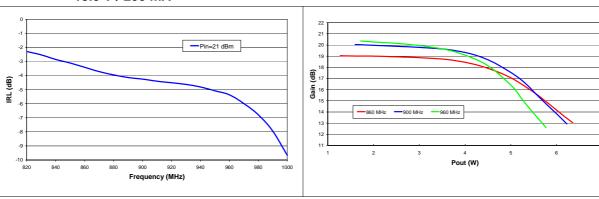





Figure 5. Input return loss vs. frequency 13.6 V / 200 mA



Gain vs. frequency 13.6 V / 200 mA



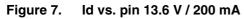
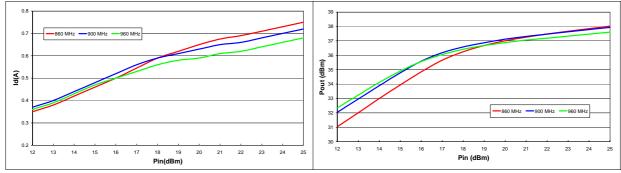




Figure 8. Pout vs. pin 13.6 V / 200 mA





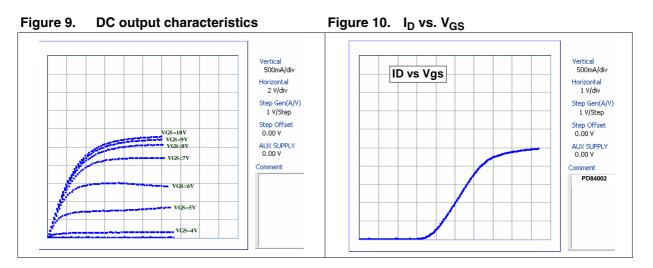
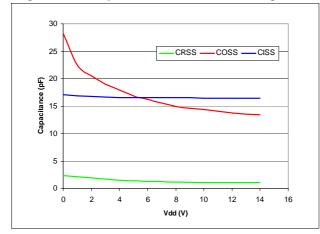




Figure 11. Capacitances vs. drain voltage



# 5 RF curves

Figure 12. Output power and efficiency vs. frequency

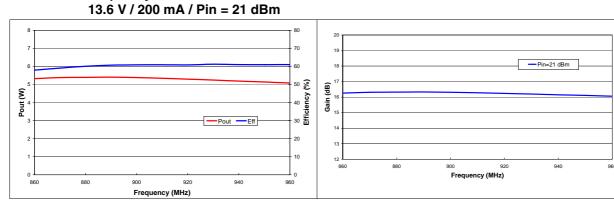
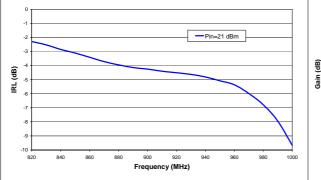
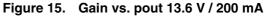
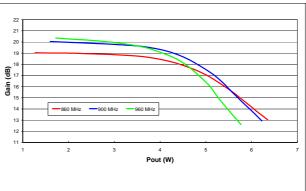




Figure 14. Input return loss vs. frequency 13.6 V / 200 mA





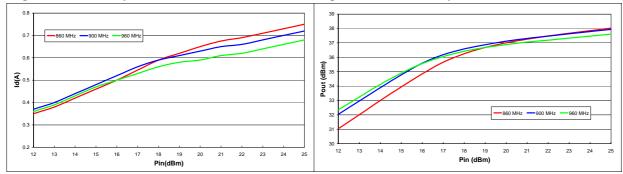



Figure 13. Gain vs. frequency 13.6 V / 200 mA









# 13.0 V / 200 IIIA

# Figure 18. Harmonics vs. frequency 13.6 V / 200 mA



# 6 Schematic and bill of material

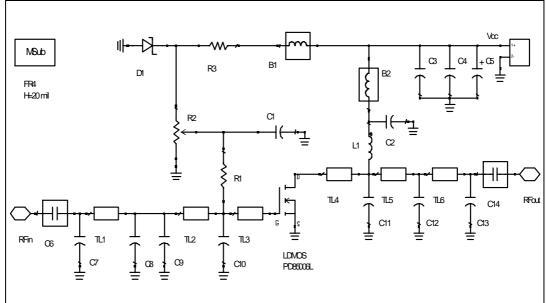



Figure 19. Schematic and bill of material

### Table 8.Components part list

| Component ID | Description  | Value    | Case size | Manufacturer     | Part code           |
|--------------|--------------|----------|-----------|------------------|---------------------|
| B1           | Ferrite Bead |          |           | Panasonic        | EXCELDRC35C         |
| B2           | Ferrite Bead |          |           | Panasonic        | EXCELDRC35C         |
| C1, C2       | Capacitor    | 120 pF   | 0603      | Murata           | GRM39-C0G121J50D500 |
| C3           | Capacitor    | 1 nF     | 0603      | Murata           | GRM39-X7R102K50C560 |
| C4           | Capacitor    | 10 nF    | 0603      | Murata           | GRM39-X7R103K50C560 |
| C5           | Capacitor    | 10 µF    | SMT       | Panasonic        | EEVHB1V100P         |
| C6, C14      | Capacitor    | 39 pF    | 0603      | Murata           | GRM39-C0G390J50D500 |
| C7           | Capacitor    | 3.3 pF   | 0603      | Murata           | GRM39-C0G3R3C50Z500 |
| C8           | Capacitor    | 2.7 pF   | 0603      | Murata           | GRM39-C0G2R7C50Z500 |
| C9           | Capacitor    | 12 pF    | 0603      | Murata           | GRM39-C0G120J50D500 |
| C10          | Capacitor    | 22 pF    | 0603      | Murata           | GRM39-C0G220J50D500 |
| C11          | Capacitor    | 8.2 pF   | 0603      | Murata           | GRM39-C0G8R2D50Z500 |
| C12          | Capacitor    | 6,8 pF   | 0603      | Murata           | GRM39-C0G6R8D50Z500 |
| C13          | Capacitor    | 3.9 pF   | 0603      | Murata           | GRM39-C0G3R9C50Z500 |
| D1           | Zener Diode  | 5.1 V    | SOD110    | Philips          | BZX284C5V1          |
| L1           | Inductor     | 12.55 nH |           | Coilcraft        | 1606-10             |
| R1           | Resistor     | 510 Ω    | 0603      | Tyco electronics |                     |

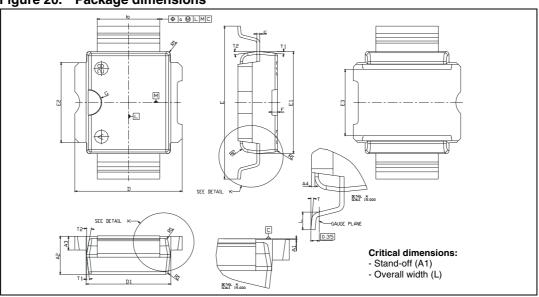


| Component ID  | Description          | Value      | ,<br>Case size | Manufacturer         | Part code    |
|---------------|----------------------|------------|----------------|----------------------|--------------|
| R2            | Potentiometer        | 10 kΩ      |                | Bourns electronics   | 3214W-1-103E |
| R3            | Resistor             | 1 k        | 0603           | Tyco electronics     | 01623440-1   |
| TL1           | Transmission<br>line | W=0.92mm   | L = 12.1 mm    |                      |              |
| TL2           | Transmission<br>line | W=0.92mm   | L = 3.2 mm     |                      |              |
| TL3           | Transmission<br>line | W=0.92mm   | L = 3.0 mm     |                      |              |
| TL4           | Transmission<br>line | W= 0.92 mm | L = 3.2 mm     |                      |              |
| TL5           | Transmission<br>line | W= 0.92 mm | L = 3.9 mm     |                      |              |
| TL6           | Transmission<br>line | W=0.92mm   | L=11.0 mm      |                      |              |
| RF in, RF out | SMA-CONN             | 50 Ω       | 60 mils        | Johnson              | 142-0701-801 |
| PD85006       | LDMOS                |            |                | STMicroelectronics   | PD85006      |
| Board         |                      |            | FR-4 THk=0.02  | 0" 2OZ Cu both sides |              |

 Table 8.
 Components part list (continued)



# 7 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

| Dim. |       | mm     |       |       | Inch   |        |
|------|-------|--------|-------|-------|--------|--------|
|      | Min   | Тур    | Мах   | Min   | Тур    | Мах    |
| A1   | 0     | 0.05   | 0.1   | 0.    | 0.0019 | 0.0038 |
| A2   | 3.4   | 3.5    | 3.6   | 0.134 | 0.137  | 0.142  |
| A3   | 1.2   | 1.3    | 1.4   | 0.046 | 0.05   | 0.054  |
| A4   | 0.15  | 0.2    | 0.25  | 0.005 | 0.007  | 0.009  |
| а    |       | 0.2    |       |       | 0.007  |        |
| b    | 5.4   | 5.53   | 5.65  | 0.212 | 0.217  | 0.221  |
| С    | 0.23  | 0.27   | 0.32  | 0.008 | 0.01   | 0.012  |
| D    | 9.4   | 9.5    | 9.6   | 0.370 | 0.374  | 0.377  |
| D1   | 7.4   | 7.5    | 7.6   | 0.290 | 0.295  | 0.298  |
| E    | 13.85 | 14.1   | 14.35 | 0.544 | 0.555  | 0.565  |
| E1   | 9.3   | 9.4    | 9.5   | 0.365 | 0.37   | 0.375  |
| E2   | 7.3   | 7.4    | 7.5   | 0.286 | 0.292  | 0.294  |
| E3   | 5.9   | 6.1    | 6.3   | 0.231 | 0.24   | 0.247  |
| F    |       | 0.5    |       |       | 0.019  |        |
| G    |       | 1.2    |       |       | 0.047  |        |
| L    | 0.8   | 1      | 1.1   | 0.030 | 0.039  | 0.042  |
| R1   |       |        | 0.25  |       |        | 0.01   |
| R2   |       | 0.8    |       |       | 0.031  |        |
| Т    | 2 deg | 5 deg  | 8 deg | 2 deg | 5 deg  | 8 deg  |
| T1   |       | 6 deg  |       |       | 6 deg  |        |
| T2   |       | 10 deg |       |       | 10 deg |        |

| Table 9. | PowerSO-10RF formed lead (gull wing) mechanical data |
|----------|------------------------------------------------------|
|          | Toweroo-torn torned lead (gun wing) meenamear data   |

Note: Resin protrusions not included (max value: 0.15 mm per side)





### Figure 20. Package dimensions



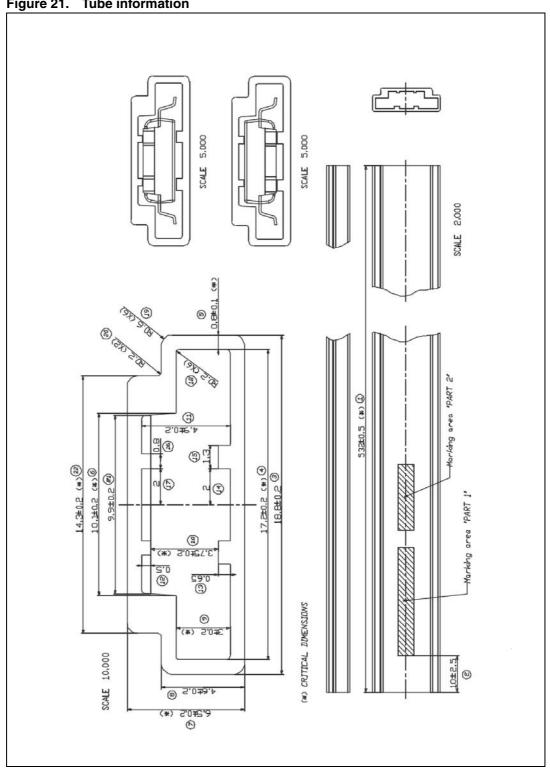
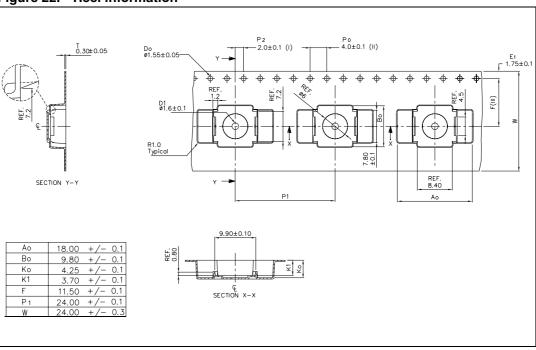




Figure 21. Tube information

Doc ID 16208 Rev 3





### Figure 22. Reel information



# 8 Revision history

| Date        | Revision | Changes                                                                     |
|-------------|----------|-----------------------------------------------------------------------------|
| 03-Sep-2009 | 1        | Initial release.                                                            |
| 29-Oct-2009 | 2        | Updated figure on cover page.                                               |
| 04-Aug-2010 | 3        | Added device shipped in tape and reel, see <i>Table 1: Device summary</i> . |



### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 16208 Rev 3