

Automotive 100 V low drop power Schottky rectifier

Features

- AEC-Q101 qualified
- PPAP capableNegligible switching losses
- · High junction temperature capability
- · Low leakage current
- Good trade-off between leakage current and forward voltage drop
- · Avalanche capability specified
- · Low thermal resistance

Application

- DC/DC converters
- · Freewheeling diodes
- Electrical vehicles (EV) and hybrid electrical vehicles

Description

lectronics sales office.

The STPS61H100-Y is a dual center tap Schottky rectifier designed for high frequency switched mode power supplies such as on board DC/DC converters for automotive applications.

Product status link STPS61H100-Y

Product summary				
I _{F(AV)}	2 x 30 A			
V _{RRM}	100 V			
T _{j(max.)}	175 °C			
V _{F(typ.)}	0.63 V			

1 Characteristics

Table 1. Absolute ratings (limiting values, per diode, at 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage	rse voltage $T_j = -40 \text{ to } +175 ^{\circ}\text{C}$		V
I _{F(RMS)}	Forward rms current	80	Α	
	Average forward surrent \$ = 0.5 erware wave	Per diode, T _c = 160 °C	30	
I _{F(AV)}	Average forward current, δ = 0.5 square wave	Per device, T _c = 160 °C	60	Α
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$		450	Α
P _{ARM}	Repetitive peak avalanche power	1900	W	
T _{stg}	Storage temperature range	-65 to +175	°C	
Tj	Operating junction temperature range ⁽¹⁾	-40 to +175	°C	

^{1.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameters

Symbol	Parameter		Typ. value	Unit
D	Per diode	0.38	°C/W	
'\tn(j-c)	R _{th(j-c)} Junction to case	Per device	0.19	C/VV

Table 3. Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
1 (1)	T _j = 25 °C	\/ -\/	-	3	16	μA	
IR ^(*)	I _R ⁽¹⁾ Reverse leakage current	T _j = 125 °C	$V_R = V_{RRM}$	-	4	16	mA
	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 30 A	-	0.76	0.81	V
V (2)		T _j = 125 °C		-	0.63	0.7	
VF(=)		T _j = 25 °C		-	0.87	0.93	V
		T _j = 125 °C		-	0.75	0.83	

^{1.} $t_p = 5 \text{ ms}, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

$$P = 0.57 \times I_{F(AV)} + 0.0043 \times I_{F}^{2}_{(RMS)}$$

DS13064 - Rev 1 page 2/9

^{2.} $t_p = 380 \ \mu s, \ \delta < 2\%$

1.1 Characteristics (curves)

Figure 1. Average forward current versus case temperature (δ = 0.5, per diode) $I_{F(AV)}(A)$ 60 50 40 30 20 10 $T_c(^{\circ}C)$ 0 25 50 75 100 125 150 175

Figure 2. Relative variation of thermal impedance junction to case versus pulse duration 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00

Figure 3. Reverse leakage current versus reverse voltage applied (typical values, per diode)

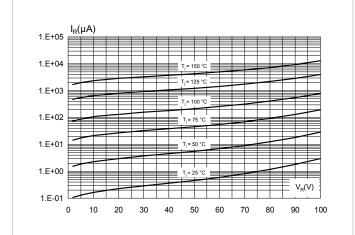
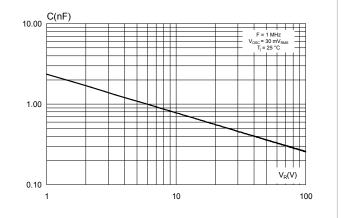



Figure 4. Junction capacitance versus reverse voltage applied (typical values, per diode)

DS13064 - Rev 1 page 3/9

Figure 5. Normalized avalanche power derating versus pulse duration ($T_j = 125$ °C)

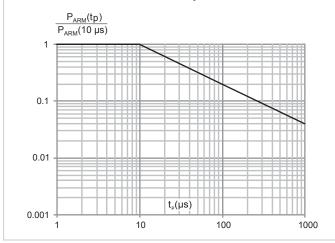
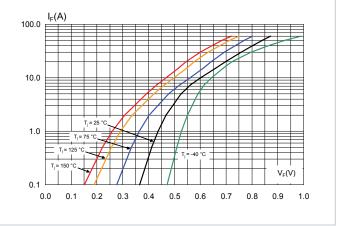
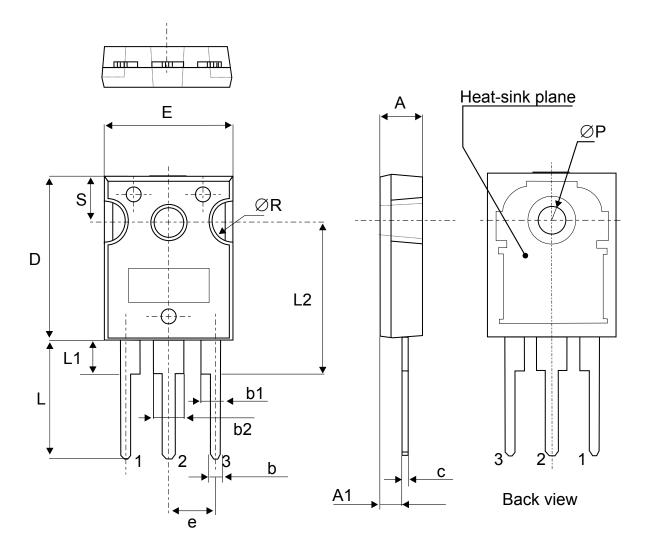



Figure 6. Forward voltage drop versus forward current (typical values, per diode)

DS13064 - Rev 1 page 4/9

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


2.1 TO-247 package information

• Epoxy meets UL94, V0

Cooling method: by conduction (C)
 Recommended torque value: 0.8 N·m

Maximum torque value: 1.0 N·m

Figure 7. TO-247 package outline

DS13064 - Rev 1 page 5/9

Table 4. TO-247 package mechanical data

			Dimensions				
Ref.		Millimeters		Inches (for reference only)			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	4.85		5.15	0.191		0.203	
A1	2.20		2.60	0.086		0.102	
b	1.00		1.40	0.039		0.055	
b1	2.00		2.40	0.078		0.094	
b2	3.00		3.40	0.118		0.133	
С	0.40		0.80	0.015		0.031	
D	19.85		20.15	0.781		0.793	
E	15.45		15.75	0.608		0.620	
е	5.30	5.45	5.60	0.209	0.215	0.220	
L	14.20		14.80	0.559		0.582	
L1	3.70		4.30	0.145		0.169	
L2		18.50			0.728		
ØP	3.55		3.65	0.139		0.143	
ØR	4.50		5.50	0.177		0.217	
S	5.30	5.50	5.70	0.209	0.216	0.224	

3 Ordering information

Table 5. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS61H100CWY	STPS61H100CWY	TO-247	4.4 g	30	Tube

DS13064 - Rev 1 page 7/9

Revision history

Table 6. Document revision history

Date	Version	Changes
11-Jul-2019	1	Initial release.

DS13064 - Rev 1 page 8/9

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS13064 - Rev 1 page 9/9