

STL11N65M2

in a PowerFLAT 5x5 HV package

Datasheet

7 6 5 10 7 11 12 1

PowerFLAT 5x5 HV

D 11

D 12

NC S

D(5, 6, 11, 12)

S(2, 3, 4, 7, 8, 9)

Pin 1

identification

G(10)

S S S

s S

GIPG260120150916ALS

Top View

s

6 D

5 D

Features

Order code	V _{DS}	R _{DS(on)} max.	۱ _D	P _{TOT}		
STL11N65M2	650 V	0.75 Ω	5 A	46 W		
- Extremely low gets observe						

N-channel 650 V, 0.62 Ω typ., 5 A MDmesh M2 Power MOSFET

Extremely low gate charge

Excellent output capacitance (COSS) profile

100% avalanche tested

Zener-protected

Applications

Switching applications

Description

lectronics sales office

This device is an N-channel Power MOSFET developed using MDmesh M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Product status link STL11N65M2

Product summary					
Order code STL11N65M2					
Marking	11N65M2				
Package	PowerFLAT 5x5 HV				
Packing Tape and reel					

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _C = 25 °C	5	•
۱ _D	Drain current (continuous) at T _C = 100 °C	3.2	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	14	А
P _{TOT}	Total power dissipation at T_C = 25 °C	46	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	v/115
T _{stg}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 10 150	

1. Pulse width is limited by safe operating area.

2. $I_{SD} \le 5 \text{ A}$, di/dt $\le 400 \text{ A}/\mu s$; V_{DS} (peak) $\le V_{(BR)DSS}$, $V_{DD} = 400 \text{ V}$.

3. $V_{DS} \le 520 V$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.7	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	58.5	0/00

1. When mounted on a 1-inch² FR-4, 2 Oz copper board.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	1.2	А
E _{AS} ⁽²⁾	Single pulse avalanche energy	105	mJ

1. Pulse width limited by T_J max.

2. Starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

2 Electrical characteristics

57

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	650			V
I _{DSS} Zero gate	Zana anto valtano dusia sument	V _{GS} = 0 V, V _{DS} = 650 V			1	
	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 650 V, T_{C} = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = 25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 3 A		0.62	0.75	Ω

Table 4. Static

1. Defined by design, not subject to production test.

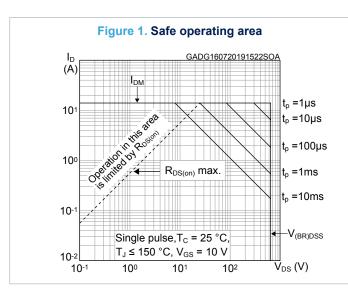
Table 5. Dynamic

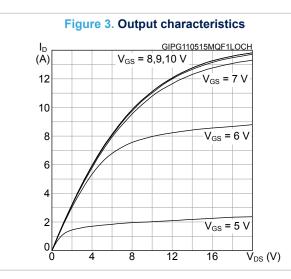
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	410	-	
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V		20	-	pF
C _{rss}	Reverse transfer capacitance	-	-	0.9	-	
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 520 V, V_{GS} = 0 V	-	43	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	6.4	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 7 A, V _{GS} = 0 to 10 V	-	12.5	-	
Q _{gs}	Gate-source charge	(see Figure 14. Test circuit for gate	-	3.2	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	5.8	-	

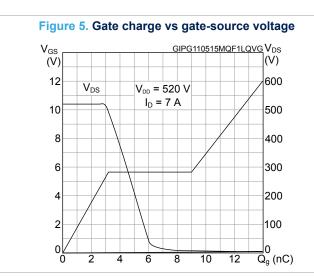
 C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

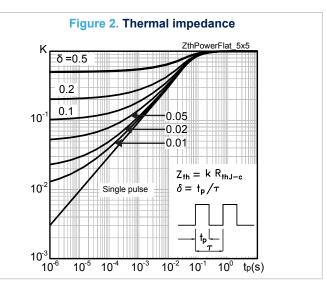
Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 325 V, I _D = 3.5 A,	-	9.5	-	
t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V	-	7.5	-	
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	26	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	15	-	


Table	7.	Source-drain	diode
10010		oouloo ululli	aloao


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		5	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		14	Α
V _{SD} ⁽²⁾	Forward on voltage	V_{GS} = 0 V, I _{SD} = 5 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 7 A, di/dt = 100 A/μs, V _{DD} = 60 V	-	318		ns
Q _{rr}	Reverse recovery charge	(see Figure 15. Test circuit for inductive	-	2.5		μC
I _{RRM}	Reverse recovery current	load switching and diode recovery times)		15.5		Α
t _{rr}	Reverse recovery time	I_{SD} = 7 A, di/dt = 100 A/µs, V _{DD} = 60 V,	-	437		ns
Q _{rr}	Reverse recovery charge	T _J = 150 °C	-	3.2		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	15		Α


1. Pulse width is limited by safe operating area.


2. Pulse test: pulse duration = $300 \ \mu$ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

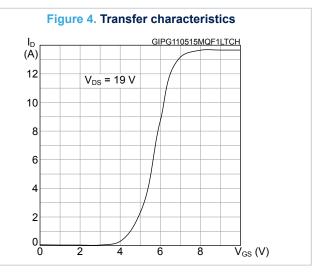
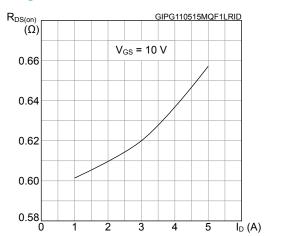
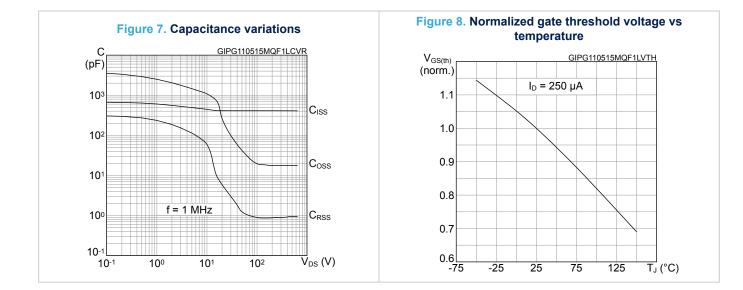
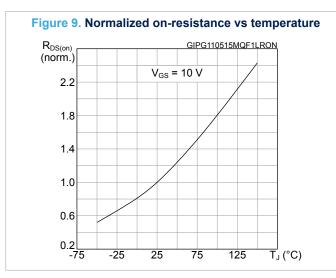





Figure 6. Static drain-source on-resistance

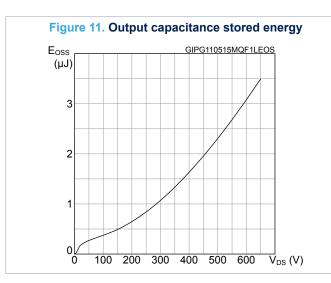
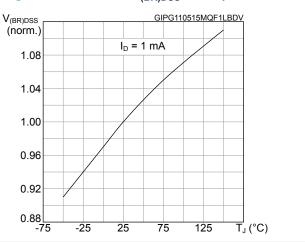
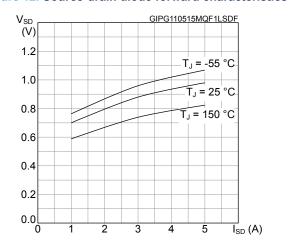
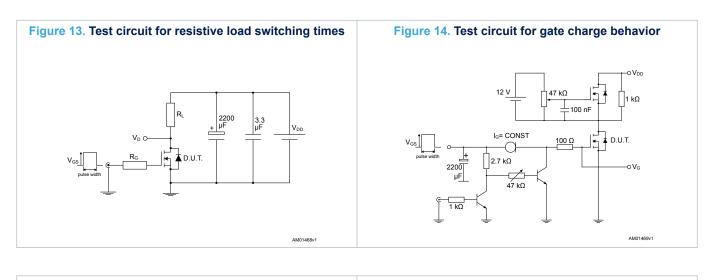
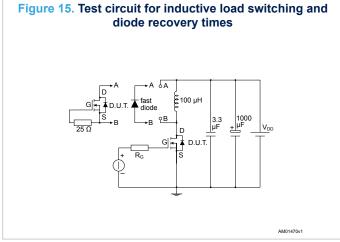


Figure 10. Normalized V_{(BR)DSS} vs temperature


Figure 12. Source-drain diode forward characteristics

3 Test circuits

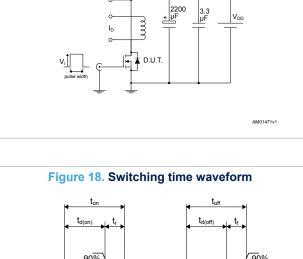
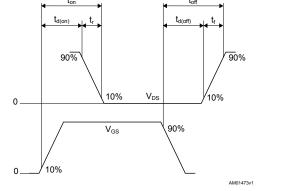



Figure 16. Unclamped inductive load test circuit

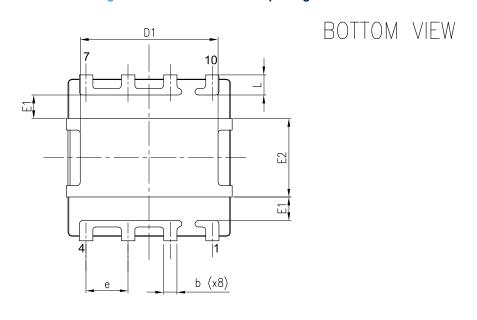
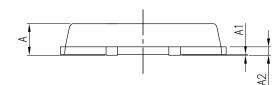
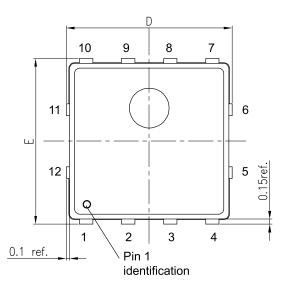


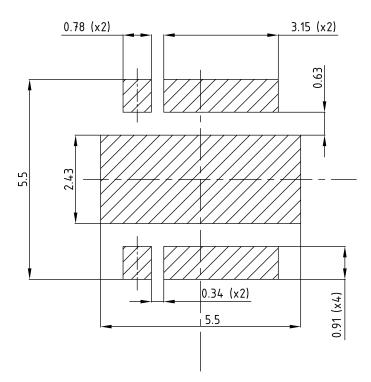
Figure 17. Unclamped inductive waveform
V(BR)DSS
VD
VDD VDD
AM01472v1


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


4.1 PowerFLAT 5x5 HV mechanical data

SIDE VIEW



Dim.		mm	
Dini.	Min.	Тур.	Max.
A	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D		5.00	
D1	4.05		4.25
E		5.00	
E1	0.64		0.79
E2	2.25		2.45
e		1.27	
L	0.45		0.75

Table 8. PowerFLAT 5x5 HV package mechanical data

Figure 20. PowerFLAT 5x5 HV recommended footprint (dimensions are in mm)

8365434_2_footp

DS13073 - Rev 1			
Downloaded from	Arrow.com.		

Revision history

Table 9. Document revision history

Date	Revision	Changes
03-Jul-2019	1	First release.

Contents

1	Electrical ratings			
2	Electrical characteristics			
	2.1	Electrical characteristics (curves)	. 5	
3	Test	circuits	.7	
4	Package information			
	4.1	PowerFLAT 5x5 HV mechanical data	. 8	
Revi	ision ł	nistory	11	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved