NVMFD5C446N

Power MOSFET
 40 V, $2.9 \mathrm{~m} \Omega$, 127 A, Dual N-Channel

Features

- Small Footprint ($5 \times 6 \mathrm{~mm}$) for Compact Design
- Low $\mathrm{R}_{\mathrm{DS}(\text { on })}$ to Minimize Conduction Losses
- Low Q_{G} and Capacitance to Minimize Driver Losses
- NVMFD5C446NWF - Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			$\mathrm{V}_{\text {DSS }}$	40	V
Gate-to-Source Voltage			V_{GS}	± 20	V
Continuous Drain Current $\mathrm{R}_{\text {日JC }}$ (Notes 1, 2, 3)	Steady State	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	127	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		90	
Power Dissipation $\mathrm{R}_{\text {өJC }}$ (Notes 1, 2)		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	89	W
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		44	
Continuous Drain Current $\mathrm{R}_{\theta \mathrm{JA}}$ (Notes 1, 2, 3)	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	24	A
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		17	
Power Dissipation $\mathrm{R}_{\theta \mathrm{JA}}$ (Notes 1 \& 2)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	3.2	W
		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		1.6	
Pulsed Drain Current	$\mathrm{T}_{\mathrm{A}}=25$	$\mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	IDM	637	A
Operating Junction and Storage Temperature			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +175 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current (Body Diode)			Is	74	A
Single Pulse Drain-to-Source Avalanche Energy $\left(T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}(\mathrm{pk})}=11 \mathrm{~A}\right)$			$\mathrm{E}_{\text {AS }}$	223	mJ
Lead Temperature for Soldering Purposes ($1 / 8^{\prime \prime}$ from case for 10 s)			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$\mathrm{R}_{\theta \mathrm{JC}}$	1.7	\multirow{7}\mathrm{C}$/ \mathrm{W}$
Junction-to-Ambient - Steady State (Note 2)	$\mathrm{R}_{\theta \mathrm{JJ}}$	47	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
2. Surface-mounted on FR4 board using a $650 \mathrm{~mm}^{2}$, 2 oz. Cu pad.
3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathbf{V}_{\text {(BR)DSS }}$	$\mathbf{R}_{\mathbf{D S}(\mathbf{O N})}$ MAX	$\mathbf{I}_{\mathbf{D}}$ MAX
40 V	$2.9 \mathrm{~m} \Omega @ 10 \mathrm{~V}$	127 A

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	2.5		3.5	V
Threshold Temperature Coefficient	$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})} / \mathrm{T}_{\mathrm{J}}$			-6.4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Drain-to-Source On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$		2.4	2.9

CHARGES, CAPACITANCES \& GATE RESISTANCE

Input Capacitance	$\mathrm{C}_{\text {ISS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}$	2450	pF
Output Capacitance	Coss		1200	
Reverse Transfer Capacitance	$\mathrm{C}_{\mathrm{RSS}}$		44	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G}(\text { (TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=32 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$	38	nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$		7.0	
Gate-to-Source Charge	$Q_{G S}$		11	
Gate-to-Drain Charge	Q_{GD}		7.0	
Plateau Voltage	V_{GP}		4.5	V

SWITCHING CHARACTERISTICS (Note 5)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=32 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1.0 \Omega \end{gathered}$	18	ns
Rise Time	t_{r}		39	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		47	
Fall Time	t_{f}		17	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=30 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.8	1.2	V
			$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.7		
Reverse Recovery Time	t_{RR}	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{dIS} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{us}, \\ \mathrm{I}_{\mathrm{S}}=30 \mathrm{~A} \end{gathered}$		50		ns
Charge Time	t_{a}			25		
Discharge Time	t_{b}			25		
Reverse Recovery Charge	$\mathrm{Q}_{\text {RR }}$			35		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Pulse Test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
5. Switching characteristics are independent of operating junction temperatures.

NVMFD5C446N

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NVMFD5C446N

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

R_{G}, GATE RESISTANCE (Ω)
Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 8. Gate-to-Source vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

Figure 12. Maximum Drain Current vs. Time in Avalanche

NVMFD5C446N

TYPICAL CHARACTERISTICS

Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping †
NVMFD5C446NT1G	5 C446N	DFN8 (Pb-Free)	$1500 /$ Tape \& Reel
NVMFD5C446NWFT1G	446 NWF	DFN8 (Pb-Free, Wettable Flanks)	$1500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 2:1

DFN8 5x6, 1.27P Dual Flag (SO8FL-Dual)
CASE 506BT
ISSUE F
DATE 23 NOV 2021

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
4. PROFILE TOLERANCE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
6. SEATING PLANE IS DEFINED BY THE TERMINALS. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.
7. A VISUAL INDICATOR FOR PIN 1 MUST BE LOCATED IN THIS AREA.

GENERIC
MARKING DIAGRAM*

XXXXXX = Specific Device Code
A =Assembly Location
Y = Year
W = Work Week
ZZ = Lot Traceability

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \mathbf{r} ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON50417E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DFN8 5X6, 1.27P DUAL FLAG (SO8FL-DUAL) | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

