Low V_{CE(sat)} Transistor, PNP, 12 V, 2.0 A, SOT-363 Package

ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

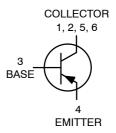
- High Current Capability (3 A)
- High Power Handling (Up to 650 mW)
- Low V_{CE(s)} (170 mV Typical @ 1 A)
- Small Size
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Benefits

- High Specific Current and Power Capability Reduces Required PCB Area
- Reduced Parasitic Losses Increases Battery Life

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V_{CEO}	-12	Vdc
Collector-Base Voltage	V _{CBO}	-12	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak	I _C I _{CM}	-2.0 -3.0	Adc
Electrostatic Discharge	ESD	HBM Class 3 MM Class C	


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

$\begin{array}{c} \text{12 VOLTS} \\ \text{2.0 AMPS} \\ \text{PNP LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \text{EQUIVALENT R}_{\text{DS(on)}} \text{ 163 m} \Omega \end{array}$

SC-88/SOT-363 CASE 419B STYLE 20

DEVICE MARKING

V2 = Specific Device Code

M = Date Code

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS12200WT1G	SOT-363 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Downloaded from Arrow.com.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C	P _D (Note 1)	450	mW
Derate above 25°C		3.6	mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	275	°C/W
Total Device Dissipation $T_A = 25^{\circ}C$	P _D (Note 2)	650	mW
Derate above 25°C		5.2	mW/°C
Thermal Resistance, Junction-to-Ambient	R _{0JA} (Note 2)	192	°C/W
Thermal Resistance, Junction-to-Lead 6	$R_{ heta JL}$	105	°C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _D Single	1.4	W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ noted)$

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector - Emitter Breakdown Voltage, (I _C = -10 mAdc, I _B = 0)	V _{(BR)CEO}	-12	-15	-	Vdc
Collector - Base Breakdown Voltage, (I _C = -0.1 mAdc, I _E = 0)	V _{(BR)CBO}	-12	-25	-	Vdc
Emitter – Base Breakdown Voltage, (I _E = -0.1 mAdc, I _C = 0)	V _{(BR)EBO}	-5.0	-7.0	-	Vdc
Collector Cutoff Current, (V _{CB} = -12 Vdc, I _E = 0)	I _{CBO}	-	-0.02	-0.1	μAdc
Collector-Emitter Cutoff Current, (V _{CES} = -12 Vdc, I _E = 0)	I _{CES}	-	-0.03	-0.1	μAdc
Emitter Cutoff Current, (V _{EB} = -5.0 Vdc, I _E = 0)	I _{EBO}	-	-0.03	-0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain (Note 3)	hee				

DC Current Gain (Note 3) $ (I_C = -0.5 \text{ A, V}_{CE} = -1.5 \text{ V}) $ $ (I_C = -0.8 \text{ A, V}_{CE} = -1.5 \text{ V}) $ $ (I_C = -1.0 \text{ A, V}_{CE} = -1.5 \text{ V}) $	h _{FE}	100 100 100	180 165 160	- 300 -	
Collector – Emitter Saturation Voltage (Note 3) $ \begin{array}{l} (I_C=-0.5~A,~I_B=-10~mA)\\ (I_C=-0.8~A,~I_B=-16~mA)\\ (I_C=-1.0~A,~I_B=-20~mA) \end{array} $	V _{CE(sat)}		-0.10 -0.14 -0.17	-0.160 -0.235 -0.290	V
Base – Emitter Saturation Voltage (Note 3) $(I_C = -1.0 \text{ A}, I_B = -20 \text{ mA})$	V _{BE(sat)}	-	-0.84	-0.95	V
Base – Emitter Turn-on Voltage (Note 3) (I _C = -1.0 A, V _{CE} = -1.5 V)	V _{BE(on)}	-	-0.81	-0.95	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T	-	100	-	MHz
Output Capacitance (V _{CB} = -1.5 V, f = 1.0 MHz)	C _{obo}	-	50	65	pF

FR-4, Minimum Pad, 1 oz Coverage.
 FR-4, 1" Pad, 1 oz Coverage.
 Pulsed Condition: Pulse Width < 300 μsec, Duty Cycle < 2%.

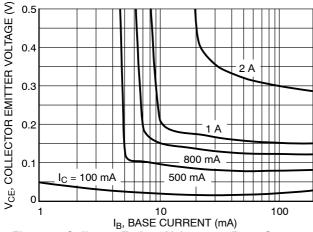


Figure 1. Collector Emitter Voltage vs. Base Current

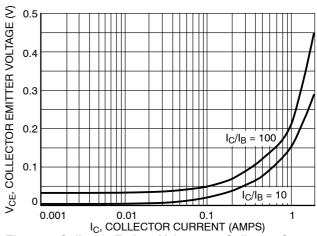


Figure 2. Collector Emitter Voltage vs. Collector Current

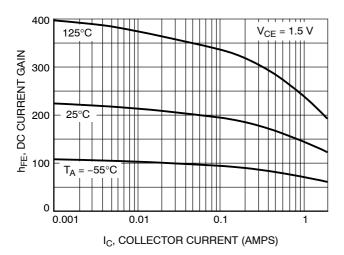


Figure 3. DC Current Gain vs. Collector Current

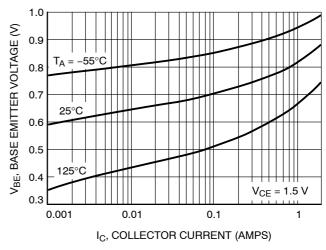


Figure 4. Base Emitter Voltage vs. Collector Current

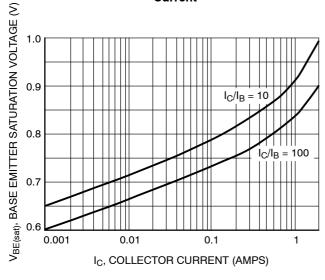


Figure 5. Base Emitter Saturation Voltage vs.

Base Current

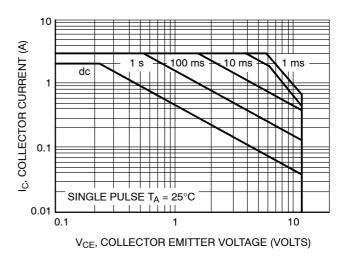
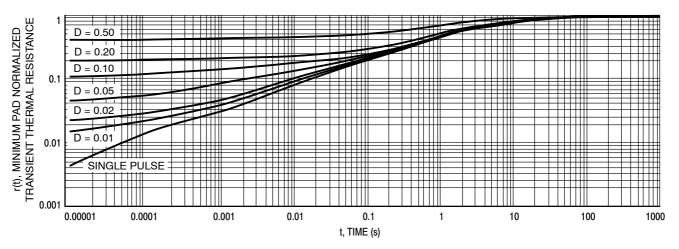


Figure 6. Safe Operating Area



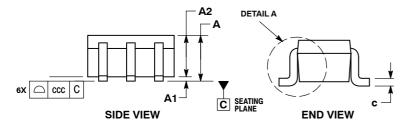


Figure 7. Normalized Thermal Response

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**

DATE 11 DEC 2012

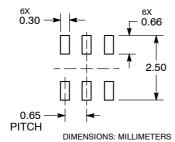
NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF
- THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H.
- DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER

	MIL	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.00		0.10	0.000		0.004	
A2	0.70	0.90	1.00	0.027	0.035	0.039	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.08	0.15	0.22	0.003	0.006	0.009	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е	0.65 BSC			0	.026 BS	С	
L	0.26	0.36	0.46	0.010	0.014	0.018	
L2	0.15 BSC			0.006 BSC			
aaa	0.15 0.006						
bbb	0.30				0.012		
ccc	0.10 0.004						
ddd	0.10 0.004						

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code


= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 1 OF 2

are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2

ON Semiconductor and (ii) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf, **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative