

Is Now Part of

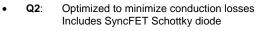
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and

May 2008


FDS6984AS

FAIRCHILD

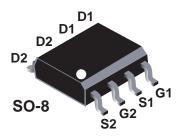
Dual Notebook Power Supply N-Channel PowerTrench[®] SyncFET[™] General Description Features

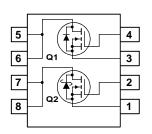
The FDS6984AS is designed to replace two single SO-8 MOSFETs and Schottky diode in synchronous DC:DC power supplies that provide various peripheral voltages for notebook computers and other battery powered electronic devices. FDS6984AS contains two unique 30V, N-channel, logic level, PowerTrench MOSFETs designed to maximize power conversion efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized to reduce conduction losses. Q2 also includes a patented combination of a MOSFET monolithically integrated with a Schottky diode.

8.5A, 30V $R_{DS(on)}$ max= 20 m $\Omega @ V_{GS}$ = 10V

 $R_{DS(on)}$ max= 28 m Ω @ V_{GS} = 4.5V

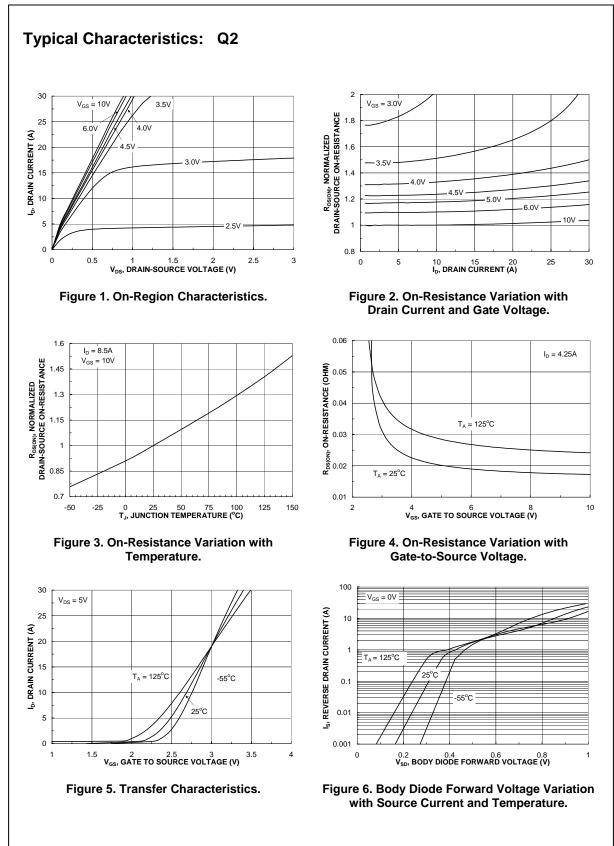

• Q1: Optimized for low switching losses Low gate charge (8nC typical)

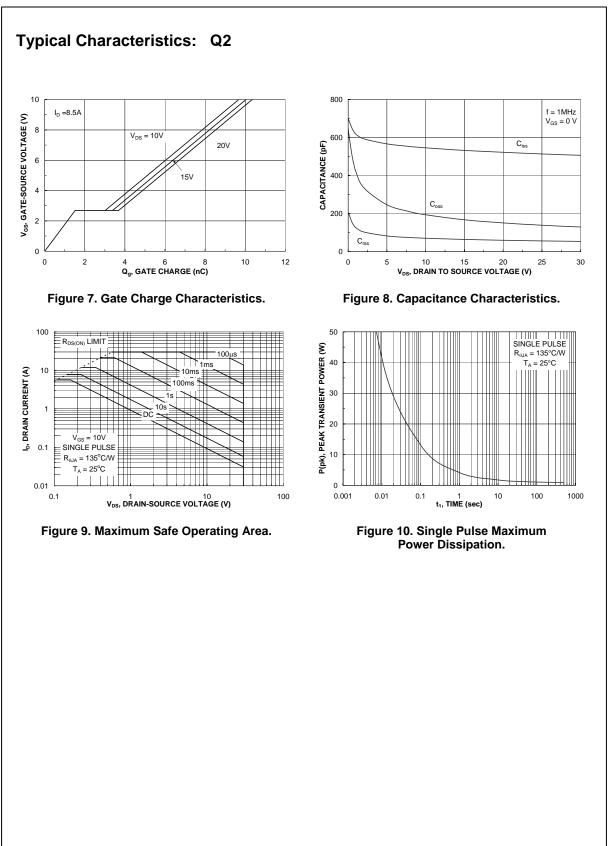

5.5A, 30V $R_{DS(on)}$ max= 31 m Ω @ V_{GS} = 10V

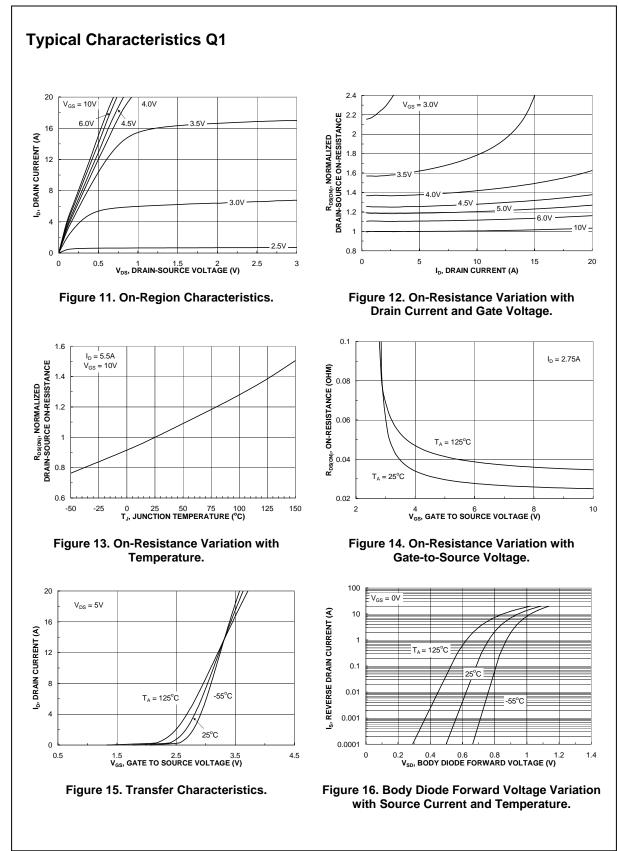
 $R_{DS(on)}$ max= 40 m Ω @ V_{GS} = 4.5V

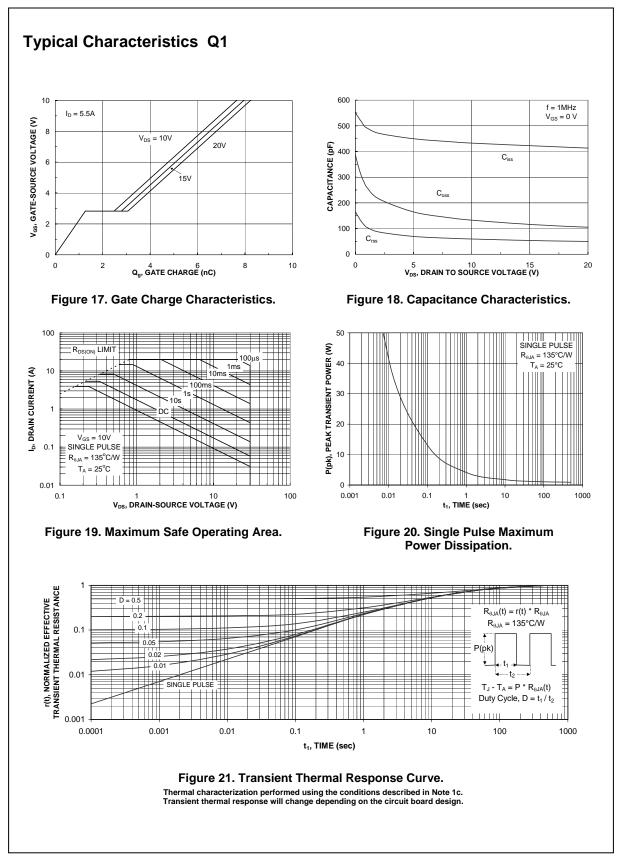
RoHS Compliant

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

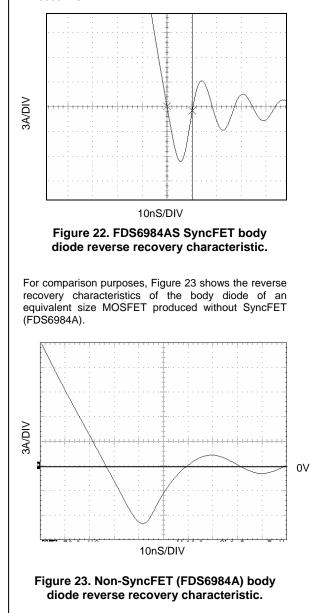

Symbol	Parameter			Q2	Q1	Units
V _{DSS}	Drain-Source Voltage		30	30	V	
V _{GSS}	Gate-Source Voltage			±20	±20	V
l _D	Drain Current	- Continuous	(Note 1a)	8.5	5.5	А
		- Pulsed		30	20	
P _D	Power Dissipation for Dual Operation			2		W
	Power Dissipation for Single Operation (Note 1a)		1.6			
	(Note 1b)		(Note 1b)	1		
			(Note 1c)	0	.9	
T _J , T _{STG}	Operating and	Storage Junction Temp	erature Range	–55 to	°C	
Therma R _{0JA}	I Characte	ristics stance, Junction-to-Amb	ient (Note 1a)	7	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case (Note 1)			40		°C/W
		and Ordering I				
Device Marking		Device	Reel Size	Tape wi	dth	Quantity
FDS6984AS		FDS6984AS	13"	12mm	ו	2500 units


©2008 Fairchild Semiconductor Corporation


Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 1 mA$ $V_{GS} = 0 V, I_D = 250 \mu A$	Q2 Q1	30 30			V
	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	Q2 Q1			500 1	μA
		$V_{DS} = 24 V, V_{GS} = 0 V, T_J = 125^{\circ}C$	Q2		2.3		mA
			Q1		79		nA
I _{GSS}	Gate-Body Leakage	$V_{GS}=\pm 20~V,~V_{DS}=0~V$	All			±100	nA
On Char	acteristics (Note 2)						
	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	Q2	1	1.7	3	V
	Ű	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	Q1	1	1.8	3	
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 1 \text{ mA}$, Referenced to 25°C	Q2		-3		mV/°C
ΔTJ T	Temperature Coefficient	I _D = 250 uA, Referenced to 25°C	Q1		-4		
20(01)	Static Drain-Source	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 8.5 \text{ A}$	Q2		17	20	mΩ
	On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 8.5 \text{ A}, T_J = 125^{\circ}\text{C}$			24	32	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 7 \text{ A}$			21	28	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	Q1		26	31	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$			34	43	
I _{D(on)}		$V_{GS} = 4.5 \text{ V}, I_D = 4.6 \text{ A}$ $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$			32	40	
	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	Q2	30			A
~	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 8.5 A$	Q1 Q2	20	25		S
g fs	Forward Transconductance	$V_{DS} = 5 V, I_D = 6.5 A$ $V_{DS} = 5 V, I_D = 5.5 A$	Q2 Q1		18		3
Dynami	c Characteristics	VDS = 3 V, ID = 3.3 A	QI		10		
	Input Capacitance	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	Q2		530		pF
	input oupdollarioo	f = 1.0 MHz	Q1		420		P
C _{oss} O	Output Capacitance		Q2		170		pF
			Q1		120		r
Crss	Reverse Transfer Capacitance		Q2		60		pF
	;		Q1		50		•
R _G	Gate Resistance	V _{GS} = 15mV, f = 1.0 MHz	Q2		3.1		Ω
			Q1		2.2		


	Test Conditions	Туре	Min	Тур	Max	Units
ng Characteristics (Note 2)	•				
Turn-On Delay Time		Q2		8	16	ns
Turn-On Rise Time		Q1		9	18	ns
Tuni-On Rise Time	$V_{DD} = 15 V, I_D = 1 A,$	Q2 Q1		6	12	115
Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6 \Omega$	Q2		23	37	ns
Turn-Off Fall Time						ns
		Q1		2	4	110
Turn-On Delay Time		Q2		9	18	ns
Turn-On Rise Time						ns
	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A},$	Q1		11	20	
Turn-Off Delay Time	V_{GS} = 4.5V, R_{GEN} = 6 Ω	Q2		13	24	ns
Turn-Off Fall Time	4	Q1 Q2	1	4	24 8	ns
		Q1		3	6	-
Total Gate Charge, Vgs = 10V						nC
Total Gate Charge, Vgs = 5V		Q2		5	8	nC
	$v_{\rm DS} = 15 \text{V}, I_{\rm D} = 8.5 \text{A}$	Q1		4	6	
Gate-Source Charge	Q1:			-		nC
Gate-Drain Charge	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$	Q2		1.9		nC
		Q1		1.5		
		3				
Maximum Continuous Drain-Sc	ource Diode Forward Current					A
Reverse Recovery Time	$I_{\rm E} = 10$ A.	Q1 Q2		13	1.5	ns
	$dI_F/dt = 300 \text{ A}/\mu \text{s}$ (Note 3)			6		nC
, ,	I _F = 5.5A,	Q1		17		ns
Reverse Recovery Charge	$dI_F/dt = 100 \text{ A}/\mu \text{s}$ (Note 3)			6		nC
Drain-Source Diode Forward	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2.3 \text{ A}$ (Note 2)	Q2		0.6	0.7	V
Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 1.3 \text{ A}$ (Note 2)	Q1		0.8	1.2	
	Turn-Off Fall Time Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge, Vgs = 10V Total Gate Charge, Vgs = 5V Gate-Source Charge Gate-Drain Charge Gate-Drain Charge Source Diode Characteri Maximum Continuous Drain-So Reverse Recovery Time Reverse Recovery Time Reverse Recovery Charge Drain-Source Diode Forward	VDD= 15 V, ID= 1 A,Turn-Off Delay Time $V_{GS} = 10V, R_{GEN} = 6 \Omega$ Turn-Off Fall Time $V_{DD} = 15 V, I_D = 1 A,$ Turn-On Delay Time $V_{DD} = 15 V, I_D = 1 A,$ Turn-Off Delay Time $V_{DD} = 15 V, I_D = 1 A,$ Turn-Off Delay Time $V_{GS} = 4.5V, R_{GEN} = 6 \Omega$ Turn-Off Fall Time $V_{GS} = 4.5V, R_{GEN} = 6 \Omega$ Total Gate Charge, Vgs = 10V $Q2: V_{DS} = 15 V, I_D = 8.5 A$ Gate-Source Charge $Q1: V_{DS} = 15 V, I_D = 5.5 A$ Gate-Drain Charge $Q1: V_{DS} = 15 V, I_D = 5.5 A$ Fource Diode Characteristics and Maximum RatingsMaximum Continuous Drain-Source Diode Forward CurrentReverse Recovery Time $I_F = 10A,$ Reverse Recovery Charge $I_F = 5.5A,$ Reverse Recovery Charge $I_F = 5.5A,$ Drain-Source Diode Forward $V_{GS} = 0 V, I_S = 2.3 A$	Turn-On Rise Time $V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$ Q2 Q1Turn-Off Delay Time $V_{GS} = 10\text{ V}, R_{GEN} = 6 \Omega$ Q2 Q1Turn-Off Fall TimeQ2 Q1Q1Turn-On Delay Time $Q_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$ Q2 Q1Turn-On Rise Time $V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$ Q2 Q1Turn-Off Delay Time $V_{GS} = 4.5\text{ V}, R_{GEN} = 6 \Omega$ Q2 Q1Turn-Off Fall Time Q_{22} Q1Q1Total Gate Charge, Vgs = 10V Q_{22} $V_{DS} = 15 \text{ V}, I_D = 8.5 \text{ A}$ Q2 Q1Total Gate Charge, Vgs = 5V Q_{21} $V_{DS} = 15 \text{ V}, I_D = 8.5 \text{ A}$ Q2 Q2 Q1Gate-Source ChargeQ1: $V_{DS} = 15 \text{ V}, I_D = 5.5 \text{ A}$ Q2 Q2 Q1Fource Diode Characteristics and Maximum RatingsQ2 Q1Maximum Continuous Drain-Source Diode Forward CurrentQ2 Q1 Q2 Q1Reverse Recovery Time $I_F = 10A,$ $dI_F/dt = 300 A/\musQ1(Note 3)Reverse Recovery TimeI_F = 5.5A,dI_F/dt = 100 A/\musQ1(Note 3)Drain-Source Diode ForwardV_{GS} = 0 \text{ V}, I_S = 2.3 \text{ A}Q1Q2$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

See "SyncFET Schottky body diode characteristics" below.
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%



Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 22 shows the reverse recovery characteristic of the FDS6984AS.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

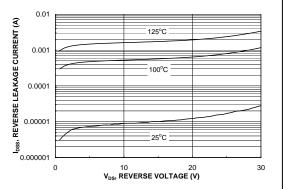


Figure 24. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ ACEx® PDP-SPM™ The Power Franchise[®] F-PFS™ Power-SPM™ Build it Now™ power CorePLUS™ **FRFET**® PowerTrench[®] franchise CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinvBoost™ QFET® CROSSVOLT™ Green FPS™ TinyBuck™ TinyLogic® CTL™ QS™ Green FPS™ e-Series™ GTO™ TINYOPTO™ Current Transfer Logic™ Quiet Series™ **EcoSPARK**[®] IntelliMAX™ RapidConfigure™ TinyPower™ ISOPLANAR™ EfficentMax™ Saving our world 1mW at a time™ TinyPWM™ EZSWITCH™ * MegaBuck™ SmartMax™ TinyWire™ µSerDes™ MICROCOUPLER™ SMART START™ MicroFET™ SPM® N MicroPak™ STEALTH™ airchild® UHC® MillerDrive™ SuperFET™ Fairchild Semiconductor® Ultra FRFET™ MotionMax™ SuperSOT™-3 FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 UniFET™ SuperSOT™-8 FACT® **OPTOLOGIC**[®] VCX™ FAST® **OPTOPLANAR[®]** SuperMOS™ VisualMax™ FastvCore™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FlashWriter[®] *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Term

Product Status	Definition				
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				
	Formative or In Design First Production Full Production				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.