

STPSC10065DLF

Datasheet

650 V, 10 A power Schottky silicon carbide diode

PowerFLAT 8x8 HV

Features

- Less than 1 mm height package
- High creepage package
- No or negligible reverse recovery
- Temperature independent switching behavior
- High forward surge capability
- Very low drop forward voltage
- Power efficient product
- ECOPACK2 compliant component

Applications

- Boost PFC
- Bootstrap diode
- LLC clamping function
- High frequency inverter applications

Description

This 10 A, 650 V, SiC diode is an ultra-high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Qualified in low profile package, the STPSC10065DLF in PowerFLAT 8x8 HV, enables low drop forward voltage associated to high surge capabilities in low space environment such as telecom and network, industrial or renewable energy domains.

Product status link	
STPSC10065DLF	

Product summary		
Symbol	Value	
I _{F(AV)}	10 A	
V _{RRM}	650 V	
V _{F(typ.)}	1.30 V	
T _{j(max.)}	175 °C	

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C unless otherwise specified)

Symbol		Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	T _j = -40 °C to + 175 °C	650	V
I _{F(RMS)}	Forward rms current		18	Α
I _{F(AV)}	Average forward current	T _c = 140 °C ⁽¹⁾ , DC	10	Α
		t_p = 10 ms sinusoidal, T_c = 25 °C	48	
I _{FSM}	Surge non repetitive forward current	t_p = 10 ms sinusoidal, T_c = 125 °C	39	Α
		t_p = 10 µs square, T _c = 25 °C	210	
I _{FRM}	Repetitive peak forward current	T_{c} = 140 $^{\circ}C^{(1)}$, T_{j} = 175 $^{\circ}C,$ δ = 0.1, f_{W} > 10 kHz	44	Α
T _{stg}	Storage temperature range		-55 to +175	°C
Tj	Operating junction temperature range			°C

1. Value based on R_{th(j-c)} max.

Table 2. Thermal resistance parameters

Symbol	Parameter	Typ. value	Max. value	Unit
R _{th(j-c)}	Junction to case	1.4	2.0	°C/W

Table 3. Static electrical characteristics

Symbol	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
IR ⁽¹⁾ Reverse leakage current	Poveraa laakaga aurrant	T _j = 25 °C	V _R = V _{RRM}	-	7	130	μA
'R'	Reverse leakage current	T _j = 150 °C		-	53	900	
V ₋ (2)	Ennuard voltage drep	T _j = 25 °C	I _F = 10 A	-	1.30	1.45	V
V _F ⁽²⁾	Forward voltage drop	T _j = 150 °C		-	1.45	1.65	

1. $t_p = 10 \text{ ms}, \delta < 2\%$

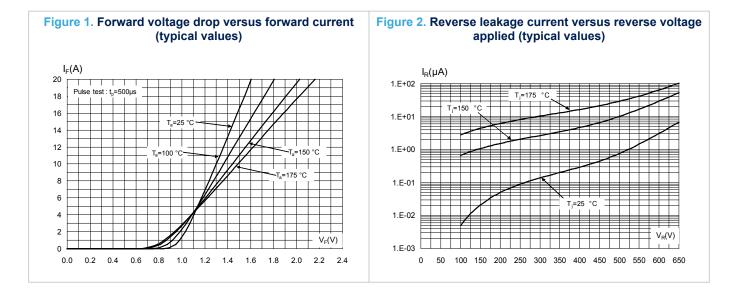
2. $t_p = 500 \ \mu s, \ \delta < 2\%$

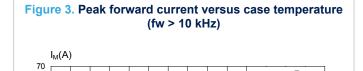
To evaluate the conduction losses, use the following equation:

 $P = 0.97 \text{ x } I_{F(AV)} + 0.068 \text{ x } I_{F}^{2}(RMS)$

For more information, please refer to the following application notes related to the power losses:

- AN604 : Calculation of conduction losses in a power rectifier
- AN4021 : Calculation of reverse losses on a power diode


Table 4. Dynamic electrical characteristics


Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	34	nC
C	C _j Total capacitance	V_{R} = 0 V, T _c = 25 °C, F = 1 MHz	670	~
Cj		V_{R} = 400 V, T _c = 25 °C, F = 1 MHz	55	pF

1. Most accurate value for the capacitive charge:

$$Q_{cj}(V_R) = \int_0^{V_R} C_j(V) dV$$

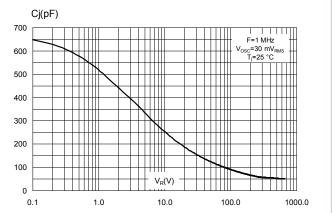
1.1 Characteristics (curves)

T_c(°C)

100

125

75


δ=tp/1

150

175

tn

Figure 4. Junction capacitance versus reverse voltage applied (typical values)

60 - δ=0.1

δ=0.3

t

δ=1

Ц

50

δ=0.7

25

50

40

30 _{δ=0.5}

20

10

0

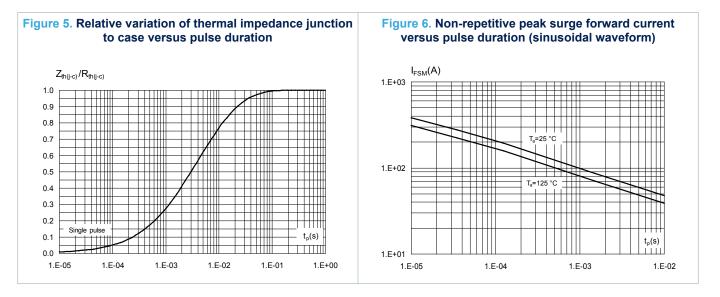
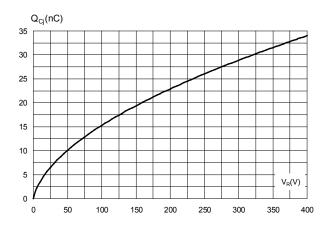
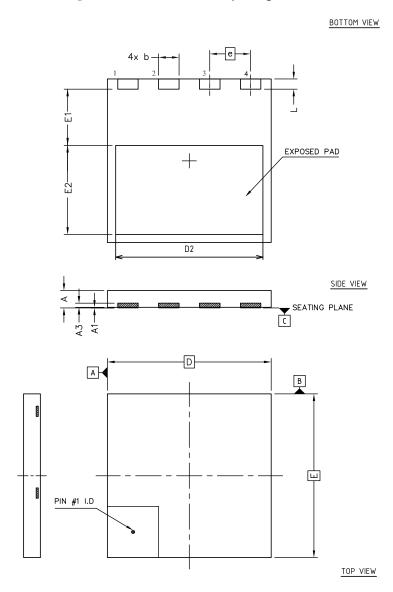



Figure 7. Total capacitive charges versus reverse voltage applied (typical values)

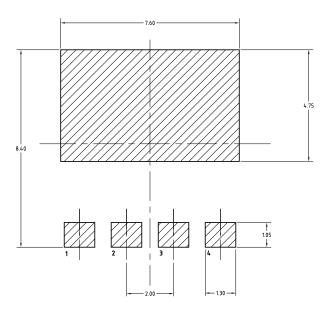

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 PowerFLAT 8x8 HV package information

- Epoxy meets UL94, V0
- Lead-free Package

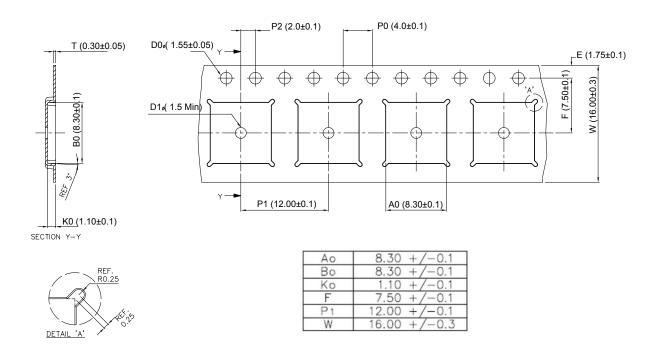
Figure 8. PowerFLAT 8x8 HV package outline



Downloaded from Arrow.com.

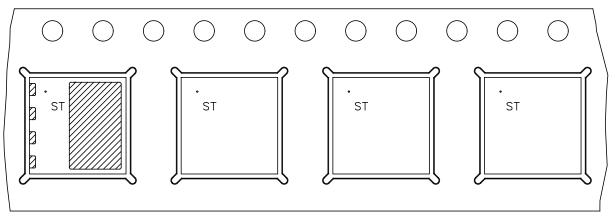
Ref.		Dimensions (in mm)	
Kel.	Min.	Тур.	Max.
A	0.75	0.85	0.95
A1	0.00		0.05
A3	0.10	0.20	0.30
b	0.90	1.00	1.10
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	7.10	7.20	7.30
E1	2.65	2.75	2.85
E2	4.25	4.35	4.45
e		2.00	
L	0.40	0.50	0.60

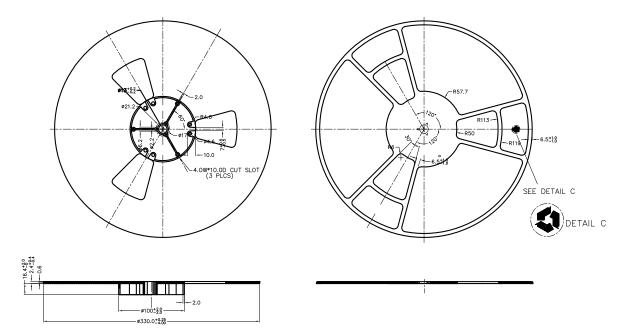
Table 5. PowerFLAT 8x8 HV mechanical data


Figure 9. PowerFLAT 8x8 HV footprint

Note: All dimensions are in millimeters.

2.2 PowerFLAT 8x8 HV packing information


57


Figure 10. PowerFLAT 8x8 HV tape

Note: All dimensions are in millimeters.

Figure 11. PowerFLAT 8x8 HV package orientation in carrier tape

Figure 12. PowerFLAT 8x8 HV reel

Note: All dimensions are in millimeters.

3 Ordering Information

Table	6.	Ordering	information
-------	----	----------	-------------

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC10065DLF	PSC10065	PowerFLAT 8x8 HV	170 mg	3000	Reel

Revision history

Date	Version	Changes	
04-Nov-2019	1	Initial release.	
31-Mar-2021	2	Inserted STPOWER logo and unpdated Table 6.	

Table 7. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved