

N-channel 650 V, 0.073 Ω typ., 30 A MDmesh M5 Power MOSFET in a TO247-4 package

Datasheet - preliminary data

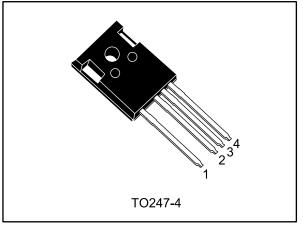
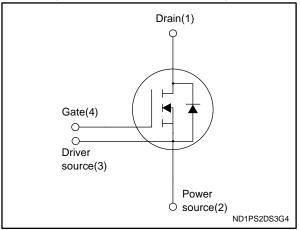



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ID
STW38N65M5-4	710 V	0.095 Ω	30 A

- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

- High efficiency switching applications:
 - Servers
 - PV inverters
 - Telecom infrastructure
 - Multi kW battery chargers

Description

This device is an N-channel Power MOSFET based on the MDmesh[™] M5 innovative vertical process technology combined with the wellknown PowerMESH[™] horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packaging
STW38N65M5-4	38N65M5	TO247-4	Tube

1/13

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curve)	6
3	Test cir	rcuits	9
4	Packag	e information	10
	4.1	TO247-4 package information	10
5	Revisio	on history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	±25	V
I _D	Drain current (continuous) at $T_c = 25 \ ^{\circ}C$	30	А
ID	Drain current (continuous) at T _c = 100 °C	19	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	120	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	190	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	- 55 to 150	C

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area

 $^{(2)}I_{SD} \leq$ 30 A, di/dt = 400 A/µs, V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 V $^{(3)}V_{DS} \leq$ 520 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.66	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	8	°C/W
E _{AS}	Single pulse avalanche energy (starting T_J = 25 °C, I_D = $I_{AR},$ V_{DD} = 50 V)	660	mJ

2 Electrical characteristics

 $(T_c = 25 \text{ °C unless otherwise specified})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	650			V
	Zero gate voltage	V _{DS} = 650 V			1	μA
I _{DSS}	I _{DSS} drain current	$V_{GS} = 0, V_{DS} = 650 V,$ T _c =125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 25 V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 15 \text{ A}$		0.073	0.095	Ω

Table 5: On /off states

Notes:

 $^{(1)}\mbox{Defined}$ by design, not subject to production test

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	3000	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	74	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	5.8	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	$V_{GS} = 0, V_{DS} = 0$ to 520 V	-	244	-	pf
$C_{o(er)}^{(2)}$	Equivalent capacitance energy related	$v_{GS} = 0, v_{DS} = 0.00520$ v	-	70	-	pf
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	2.4	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 15 A,	-	71	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 10 V$ (see <i>Figure 16</i> :	-	18	-	nC
Q _{gd}	Gate-drain charge	"Gate charge test circuit")	-	30	-	nC

Table 6: Dynamic

Notes:

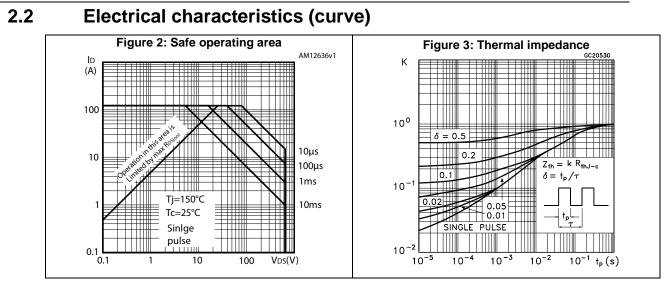
 $^{(1)}C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

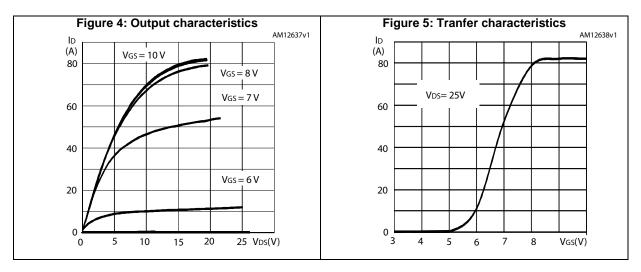
 $^{(2)}C_{o(er)}$ is a constant capacitance value that gives the same stored energy as Coss while V_{DS} is rising from 0 to 80% V_{DSS} .

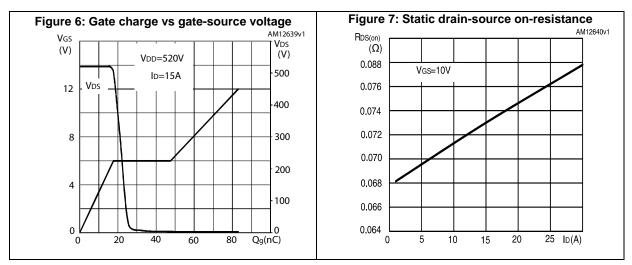
Electrical characteristics

	Table 7: Switching times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(V)}	Voltage delay time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 20 \text{ A},$	-	60	-	ns	
t _{r(V)}	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	8	-	ns	
t _{f(i)}	Current fall time	(see Figure 17: " Test circuit for inductive load switching and diode	-	8	-	ns	
$t_{c(off)}$	Crossing time	recovery times" and Figure 20: "Switching time waveform")	-	11.5	-	ns	

Table 8: Source drain diode

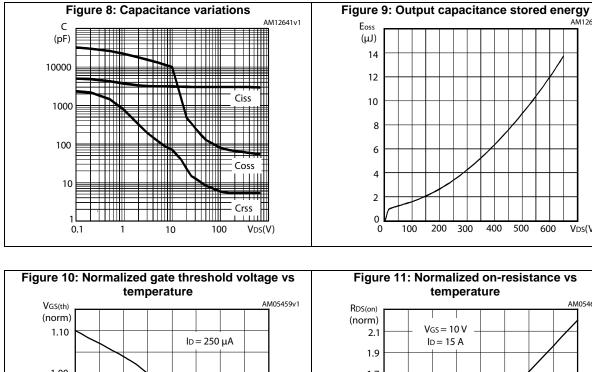

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		30	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		120	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 30 \text{ A}, \text{ V}_{GS} = 0$	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 30 A,	-	382		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs V _{DD} = 100 V	-	6.6		μC
I _{RRM}	Reverse recovery current	(see Figure 20: "Switching time waveform")	-	35		А
t _{rr}	Reverse recovery time	I _{SD} = 30 A,	-	522		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs V _{DD} = 100 V, T _j = 150 °C	-	10.3		μC
I _{RRM}	Reverse recovery current	(see Figure 20: "Switching time waveform")	-	40		A

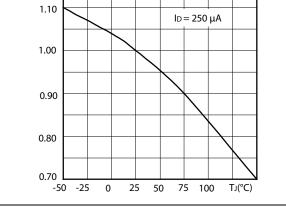

Notes:

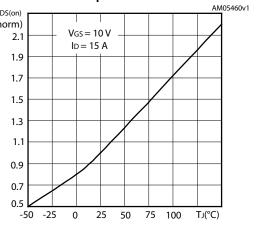

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area

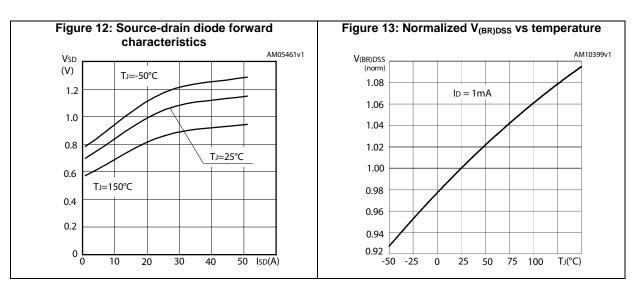
 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

6/13


DocID029243 Rev 1




Electrical characteristics


AM12642v1

VDs(V)

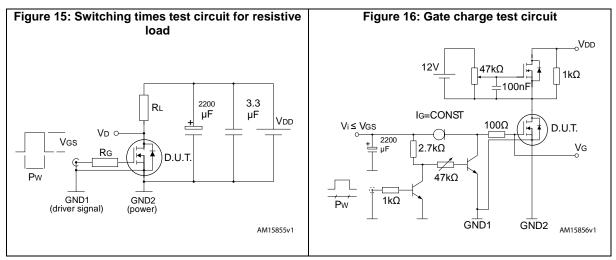
57

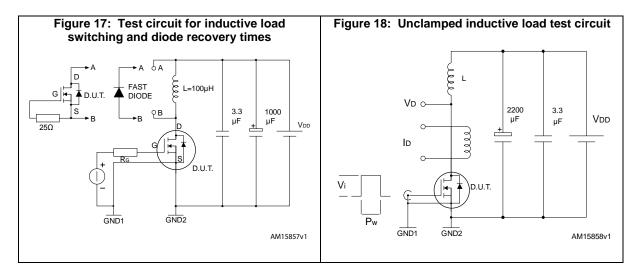
DocID029243 Rev 1

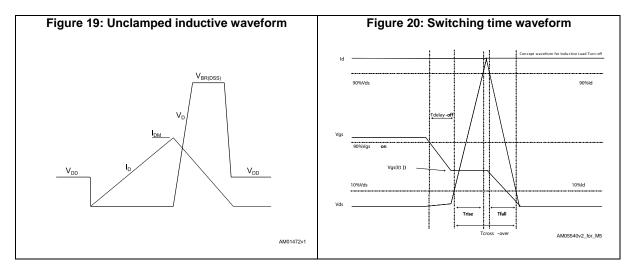
7/13

Electrical characteristics

STW38N65M5-4




 $E_{\mbox{\scriptsize on}}$ including reverse recovery of a SiC diode.


DocID029243 Rev 1

3 Test circuits

DocID029243 Rev 1

9/13

57

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO247-4 package information

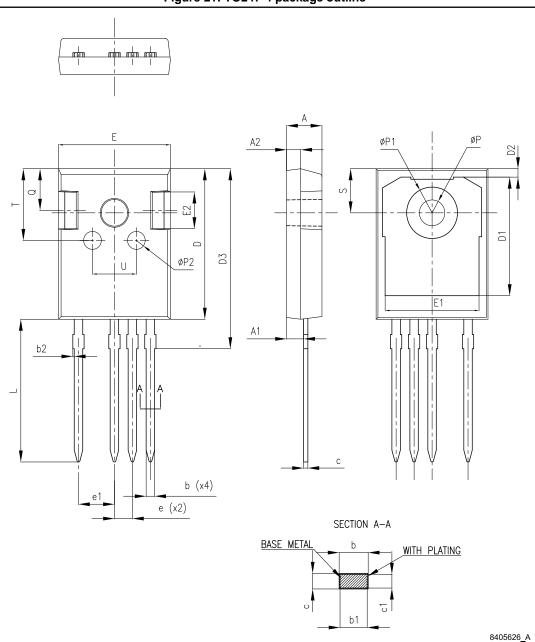


Figure 21: TO247-4 package outline

Package information

5M5-4				
	Table 9: TO247-	4 mechanical data		
Dim.		mm.		
Dim.	Min.	Тур.	Max.	
А	4.90	5.00	5.10	
A1	2.31	2.41	2.51	
A2	1.90	2.00	2.10	
b	1.16		1.29	
b1	1.15	1.20	1.25	
b2	0		0.20	
С	0.59		0.66	
c1	0.58	0.60	0.62	
D	20.90	21.00	21.10	
D1	16.25	16.55	16.85	
D2	1.05	1.20	1.35	
D3	24.97	25.12	25.27	
E	15.70	15.80	15.90	
E1	13.10	13.30	13.50	
E2	4.90	5.00	5.10	
E3	2.40	2.50	2.60	
е	2.44	2.54	2.64	
e1	4.98	5.08	5.18	
L	19.80	19.92	20.10	
Р	3.50	3.60	3.70	
P1			7.40	
P2	2.40	2.50	2.60	
Q	5.60		6.00	
S		6.15		
Т	9.80		10.20	
U	6.00		6.40	

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
20-Apr-2016	1	Initial release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

