

STB11N52K3, STF11N52K3 STP11N52K3

N-channel 525 V, 0.41 Ω 10 A SuperMESH3[™] Power MOSFET in D²PAK,TO-220FP and TO-220 packages

Datasheet — production data

Features

Order codes	V _{DSS}	R _{DS(on)} max.	I _D	P _w
STB11N52K3				125 W
STF11N52K3	525 V	< 0.51 Ω	10 A	30 W
STP11N52K3				125 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Switching applications

Description

These devices are N-channel Power MOSFETs made using the SuperMESH3™ technology that is obtained via improvements applied to STMicroelectronics' SuperMESH™ technology combined with a new optimized vertical structure. The resulting transistor has an extremely low on resistance, superior dynamic performance and high avalanche capability, making it especially suitable for the most demanding applications.

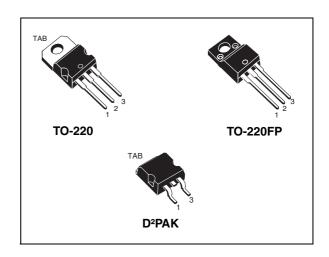


Figure 1. Internal schematic diagram

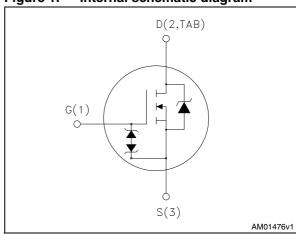


Table 1. Device summary

Order codes	Marking	Packages	Packaging
STB11N52K3		D ² PAK	Tape and reel
STF11N52K3	11N52K3	TO-220FP	Tube
STP11N52K3		TO-220	Tube

March 2012 Doc ID 018868 Rev 2 1/20

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	
4	Package mechanical data	. 10
5	Package mechanical data	. 17
6	Revision history	. 19

1 Electrical ratings

Table 2. Absolute maximum ratings

Cumbal	Dovometov	Va	Linit	
Symbol	Parameter	TO-220, D ² PAK	TO-220FP	- Unit
V _{DS}	Drain- source voltage	5	25	V
V _{GS}	Gate- source voltage	±	30	V
I _D	Drain current (continuous) at T _C = 25 °C	10	10 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	6	6 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	40 40 (1)		Α
P _{TOT}	Total dissipation at T _C = 25 °C	125 30		W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _J max)	5		А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	1'	70	mJ
V _{ESD(G-S)}	Gate source ESD(HBM-C = 100 pF, R = 1.5 k Ω)	2500		V
dv/dt ⁽³⁾	Peak diode recovery voltage slope	12		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	2500		
T _J T _{stg}	Operating junction temperature Storage temperature	- 55 to 150		°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq$ 10 A, di/dt \leq 400 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$

Table 3. Thermal data

Symbol	Parameter	TO-220	TO-220FP	D ² PAK	Unit
R _{thj-case}	Thermal resistance junction-case max	1	4.17	1	°C/W
R _{thj-amb}	Thermal resistance junction-amb max	62.50			°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max			30	°C/W
TJ	Maximum lead temperature for soldering purpose	300			°C/W

2 Electrical characteristics

(Tcase =25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	525			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 525 V V _{DS} = 525 V, T _C =125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 5 A		0.41	0.51	Ω

Table 5. Dynamic

	•					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	1400 110 22	-	pF pF pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V _{DS} = 0 to 420 V, V _{GS} = 0	-	83	-	pF
R_g	Gate input resistance	f=1 MHz open drain	1	3	7	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 420 V, I_D = 10 A, V_{GS} = 10 V (see Figure 18)	-	51 8 32	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 6. Switching times

	- · · · · · · · · · · · · · · · · · · ·					
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 210 \text{ V}, I_D = 5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 17)	,	7 18 281 42	-	ns ns ns ns

4/20 Doc ID 018868 Rev 2

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		-		10 40	A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				40	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 10 \text{ A}, V_{GS} = 0$	-		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		270		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V	-	2700		nC
I _{RRM}	Reverse recovery current	(see Figure 19)		20		Α
t _{rr}	Reverse recovery time	$I_{SD} = 10 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$		320		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V T _J = 150 °C	-	3400		nC
I _{RRM}	Reverse recovery current	(see Figure 19)		22		Α

^{1.} Pulse width limited by safe operating area

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	Igs=± 1 mA (open drain)	30	-	ı	V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{2.} Pulsed: pulse duration = 300 µs, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220, D2PAK

Figure 3. Thermal impedance for TO-220, D²PAK

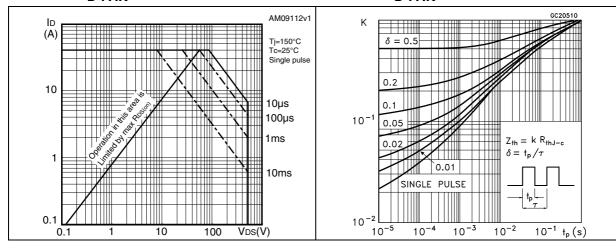


Figure 4. Safe operating area for TO-220FP Figure 5. Thermal impedance for TO-220FP

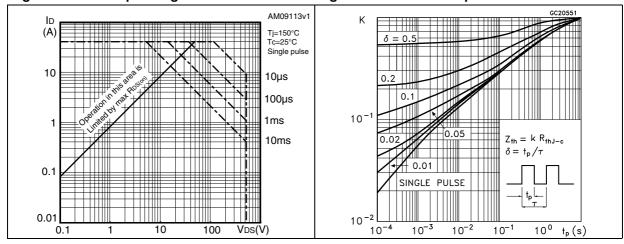


Figure 6. Output characteristics

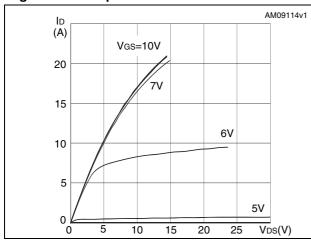
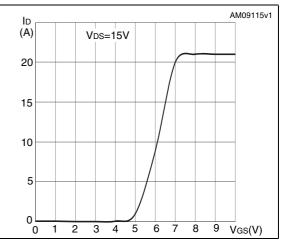



Figure 7. Transfer characteristics

Doc ID 018868 Rev 2

6/20

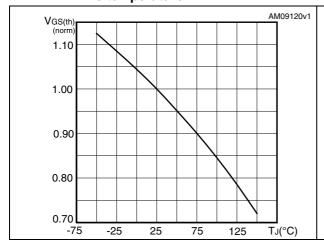
AM09116v1 AM09117v1 Vgs $\mathsf{RDS}(\mathsf{on})$ (Ω) (V) VDS Vgs=10V VDD=420V 0.54 400 12 ID=10A 0.52 350 10 0.50 300 0.48 8 250 0.46 200 0.44 150 0.42 100 0.40 50 0.38 0.36 0 4 20 40 60 Qg(nC) 2 6 8 10 12 ID(A)

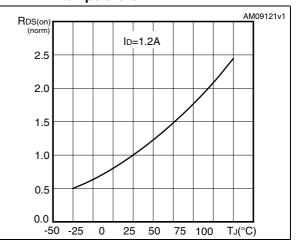
Figure 8. Gate charge vs gate-source voltage Figure 9. Static drain-source on resistance

Figure 10. Capacitance variations

10

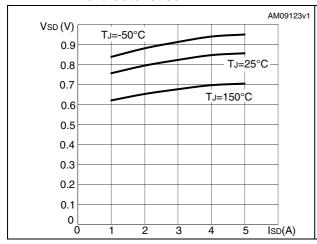
C (pF)
1000
Ciss
Ciss
4
3


Figure 11.


2

Coss

Crss



Output capacitance stored energy

577

Figure 14. Source-drain diode forward characteristics

Figure 15. Normalized B_{VDSS} vs temperature

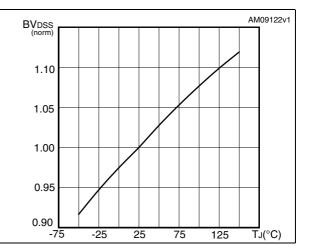
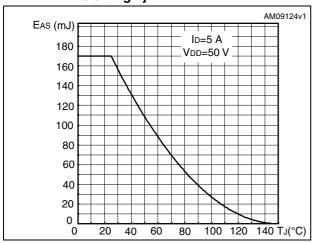



Figure 16. Maximum avalanche energy vs starting Tj

577

3 Test circuits

Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit

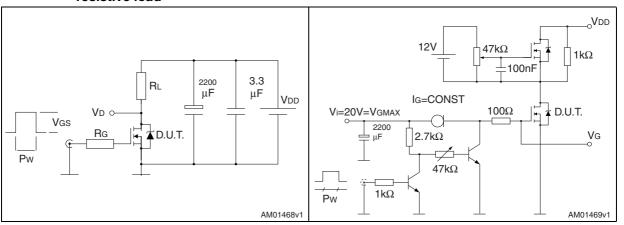


Figure 19. Test circuit for inductive load switching and diode recovery times

Figure 20. Unclamped inductive load test circuit

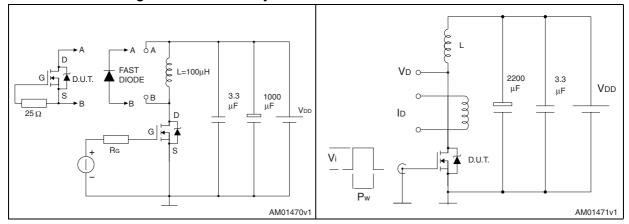
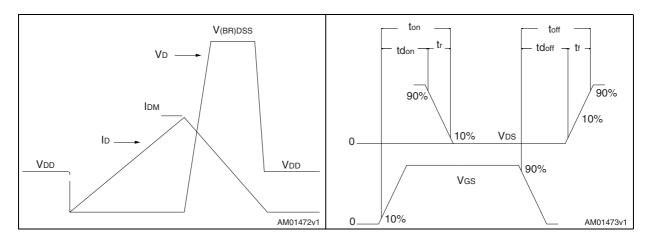



Figure 21. Unclamped inductive waveform

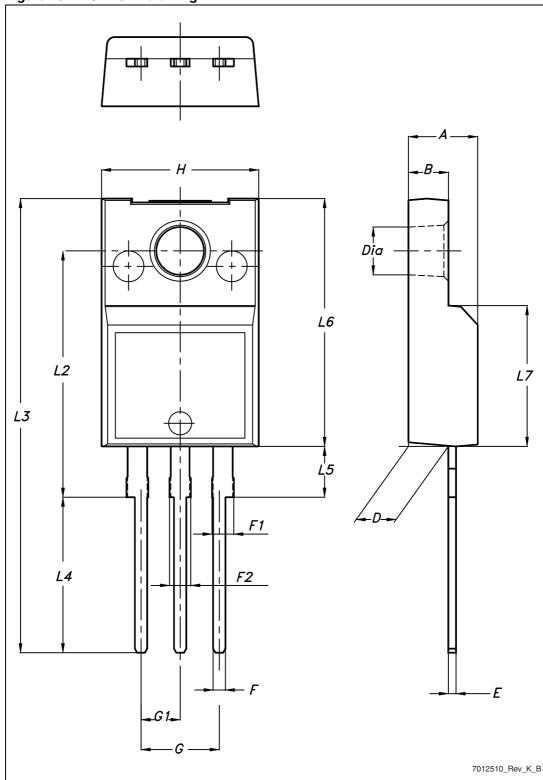
Figure 22. Switching time waveform

577

Doc ID 018868 Rev 2

9/20

Package mechanical data 4

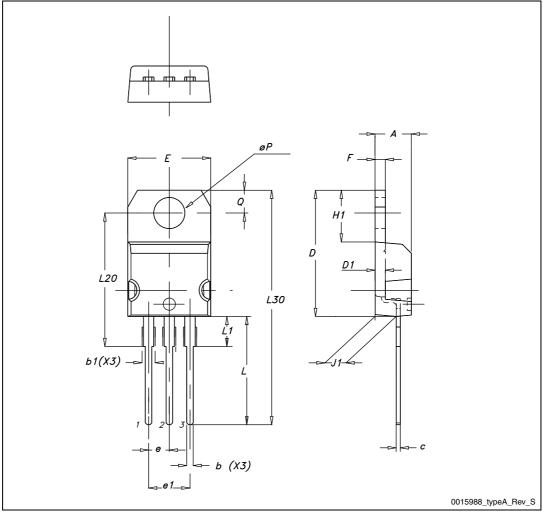

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

10/20 Doc ID 018868 Rev 2

Table 9. TO-220FP mechanical data

Di	mm				
Dim.	Min.	Тур.	Max.		
А	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
Е	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

Figure 23. TO-220FP drawing



Doc ID 018868 Rev 2

Table 10. TO-220 type A mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
Е	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

Figure 24. TO-220 type A drawing

14/20 Doc ID 018868 Rev 2

Table 11. D²PAK (TO-263) mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50				
Е	10		10.40		
E1	8.50				
е		2.54			
e1	4.88		5.28		
Н	15		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.4			
V2	0°		8°		

Figure 25. D²PAK (TO-263) drawing

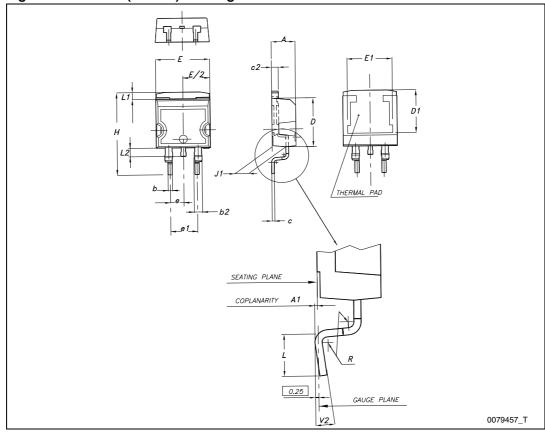
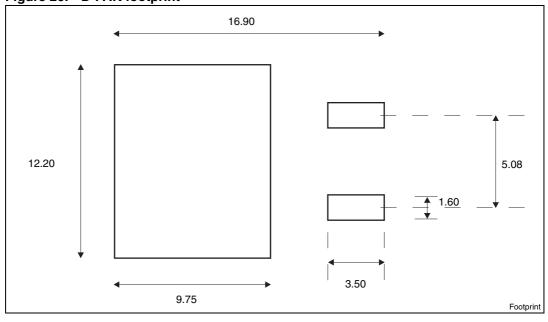
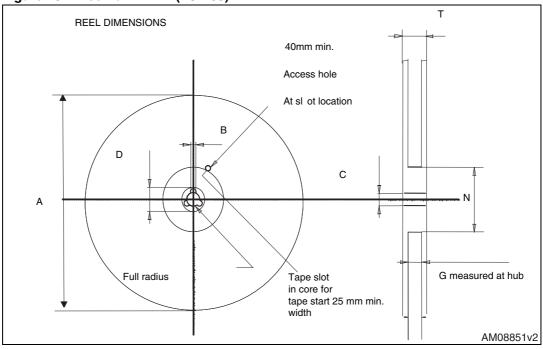



Figure 26. D²PAK footprint^(a)

a. All dimension are in millimeters

5 Package mechanical data


Table 12. D²PAK (TO-263) tape and reel mechanical data

Таре				Reel		
Dim.	m	m	Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty 1000		
P2	1.9	2.1	Bulk qty 1000			
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Figure 27. Tape for D2PAK (TO-263)

Figure 28. Reel for D²PAK (TO-263)

477

18/20

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
20-May-2011	1	First release.
27-Mar-2012 2		Inserted max and min. values for R _G in <i>Table 5</i> . Updated <i>Section 4: Package mechanical data</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

20/20 Doc ID 018868 Rev 2

