

STL70N10F3

N-channel 100 V, 0.0078 Ω, 16 A STripFET™ III Power MOSFET in PowerFLAT™ 5x6 package

Datasheet — production data

Features

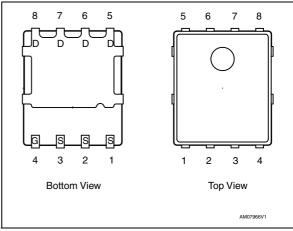
Order code	V _{DSS}	R _{DS(on)} max @V _{GS} =10V	ID	P _{TOT}
STL70N10F3	100 V	0.0084 Ω	16 A	136 W

- Improved die-to-footprint ratio
- Very low thermal resistance
- Low on-resistance

Applications

Switching applications

Description


)psolete

This device is an N-channel enhancement mode Power MOSFET produced using STMicroelectronics' STripFET[™] III technology, which is specifically designed to minimize onresistance and gate charge to provide superior switching performance.

Figure 1.

e 1. Internal schematic diagram

Order code	Marking	Package	Packaging
STL70N10F3	70N10F3	PowerFLAT™ 5x6	Tape and reel

www.st.com

This is information on a product in full production.

Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuits
4	Package mechanical data9
5	Packaging mechanical data 14
6	Revision history
0050	Revision history

Electrical ratings 1

Table 2.	Absolute	maximum	ratings
----------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	100	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	82	А
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	58	А
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	16	А
I _{DM} ^{(3),(2)}	Drain current (pulsed)	64	А
P _{TOT} ⁽¹⁾	Total dissipation at $T_C = 25 \ ^{\circ}C$	136	W
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25 °C	4	W
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C
1. The value	is rated according to R _{thj-c} .		
2. The value	is rated according to R _{thj-pcb.}		
3. Pulse widt	h limited by safe operating area.		

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.1	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	31	°C/W

1. When mounted on FR-4 board of 1inch², 2oz Cu, t < 10 sec

Table 4. Avalanche data

36

Symbol	Parameter	Value	Unit
I _{AV}	Not-repetitive avalanche current, (pulse width limited by Tj max)	16	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}, I_D = I_{AV}, V_{DD} = 50 \text{ V}$)	770	mJ

)bsolf

Electrical characteristics 2

(T_{CASE} = 25 °C unless otherwise specified)

Table J.	On/on states					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	100	-	-	V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 100 V, V _{DS} = 100 V, T _C = 125 °C	-	-	10 100	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20 V	-	-	±200	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	2	20	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 8 A	7	0.0078	0.0084	Ω

Table 5. **On/off states**

Table 6. Dynamic

- (-)	on-resistance					
Table 6.	Dynamic	olete				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f=1 MHz, V _{GS} =0	-	3210 450 16	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =50 V, I_D = 16 A V_{GS} =10 V (see Figure 15)	-	56 17 16	-	nC nC nC

Switching times

	∽ga	diate drain enarge	(000 / iguro 10)		10		
10	Table 7.	Switching times					
			1			[
v~S	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
<u>N</u>	t _{d(on)}	Turn-on delay time			17		ns
	t _r	Rise time	V _{DD} =50 V, I _D = 8 A, R _G =4.7 Ω, V _{GS} =10 V		11		ns
	t _{d(off)}	Turn-off delay time	(see Figure 14)	-	43	-	ns
	t _f	Fall time	(300 1 19010 14)		5.7		ns

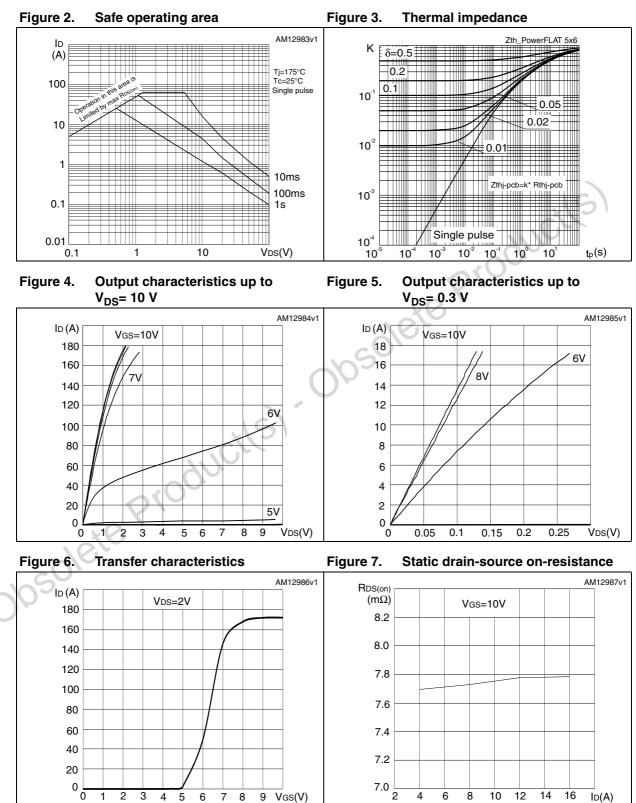


Table 0.						
Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
I _{SD}	Source-drain current		-	-	16	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-	-	64	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 16 A, V _{GS} =0	-	-	1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 16 A,		56		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/µs,	-	144	-	nC
I _{RRM}	Reverse recovery current	V _{DD} =80 V		5		A
					1	
	Reverse recovery current dth limited by safe operating area. bulse duration=300µs, duty cycle 1.5°	bsolete	070	301		

Table 8. Source drain diode

2.1 Electrical characteristics (curves)

Figure 8. Gate charge vs. gate-source voltage

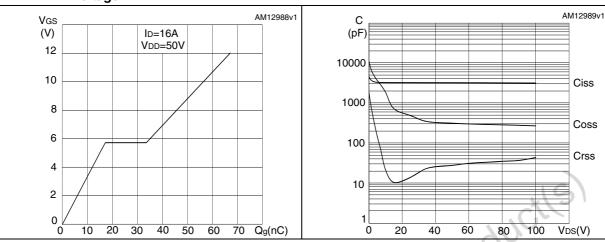
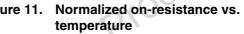



Figure 10. Normalized gate threshold voltage Figure 11. vs. temperature

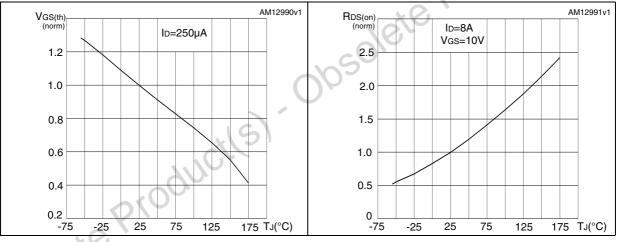
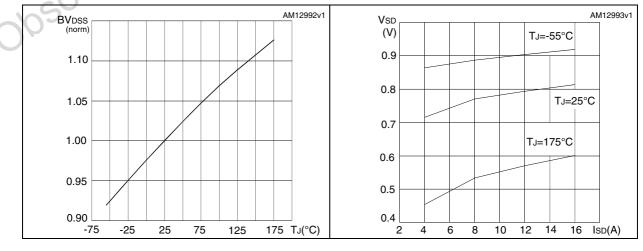
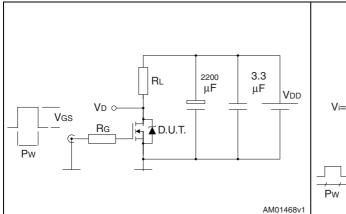



Figure 12. Normalized B_{VDSS} vs temperature

Figure 13. Source-drain diode forward characteristics



Doc ID 018794 Rev 3

57

3 Test circuits

Figure 14. Switching times test circuit for resistive load

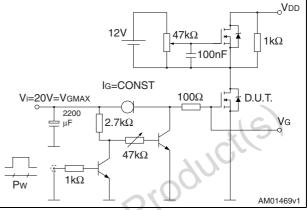
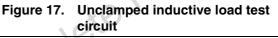
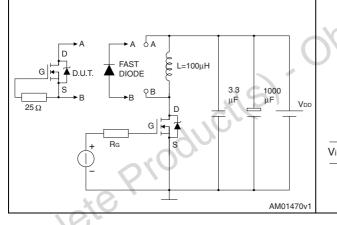




Figure 15. Gate charge test circuit

Figure 16. Test circuit for inductive load switching and diode recovery times

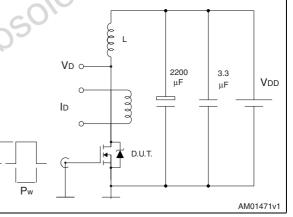
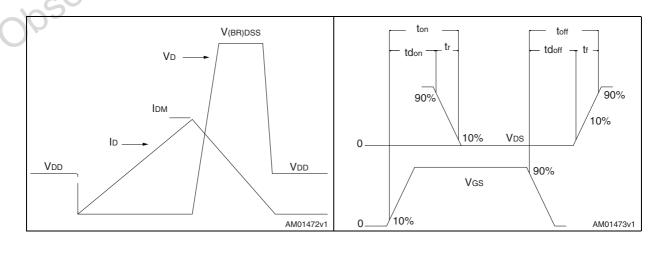



Figure 18. Unclamped inductive waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim.	mm			
	Min.	Тур.	Max.	
А	0.80	0.83	0.93	
A1	0	0.02	0.05	
A3		0.20	- 40-	
b	0.35	0.40	0.47	
D		5.00		
D1		4.75		
D2	4.15	4.20	4.25	
E		6.00		
E1		5.75		
E2	3.43	3.48	3.53	
E4	2.58	2.63	2.68	
е	. CL	1.27		
L	0.70	0.80	0.90	
stepr				

 Table 9.
 PowerFLAT™ 5x6 type C-B mechanical data

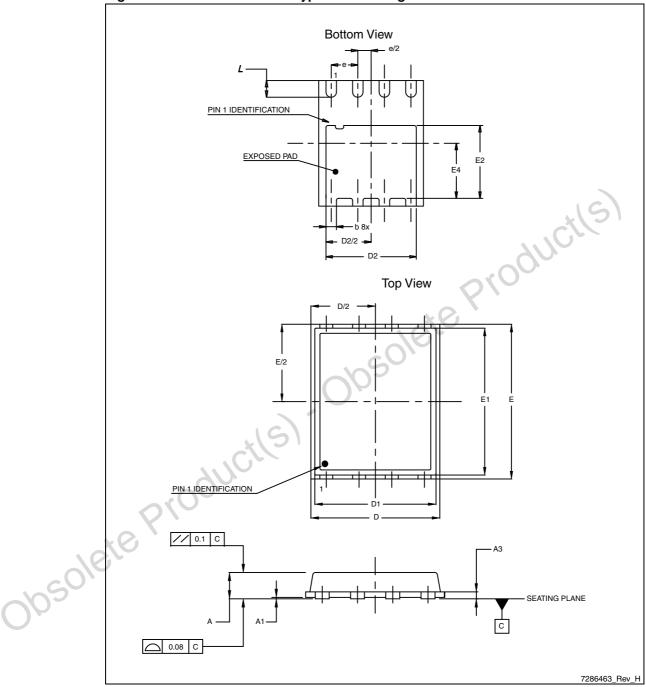


Figure 20. PowerFLAT™ 5x6 type C-B drawing

Dim.	mm			
	Min.	Тур.	Max.	
А	0.80		1.00	
A1	0.02		0.05	
A2		0.25	0.50	
b	0.30			
D		5.20		
E		6.15		
D2	4.11		4.31	
E2	3.50		3.70	
е		1.27	00	
e1		0.65		
L	0.715	20	1.015	
К	1.05	101	1.35	
	ducits)~		

Table 10. PowerFLAT™ 5x6 type S-C mechanical data

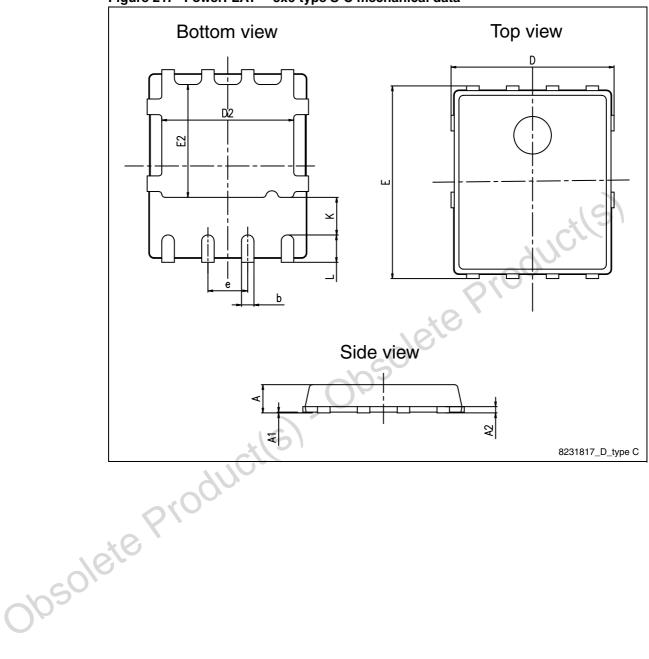


Figure 21. PowerFLAT[™] 5x6 type S-C mechanical data

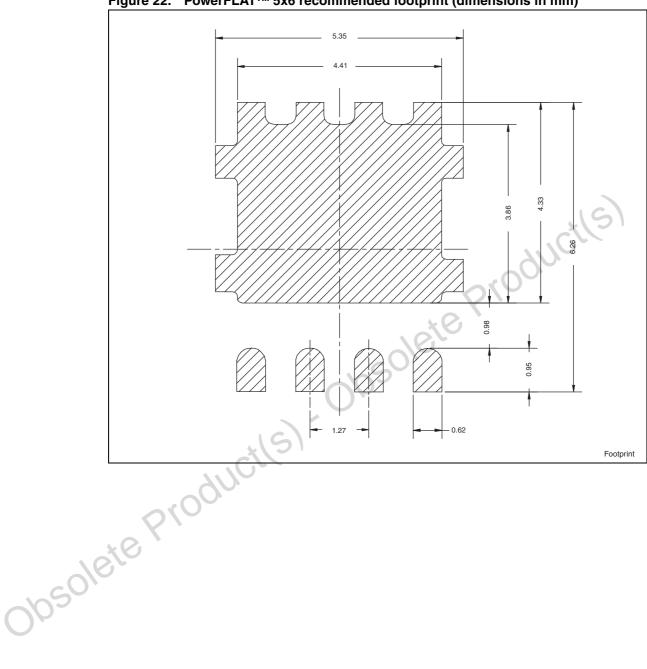
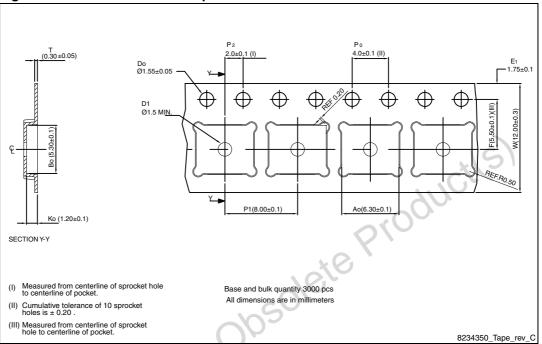
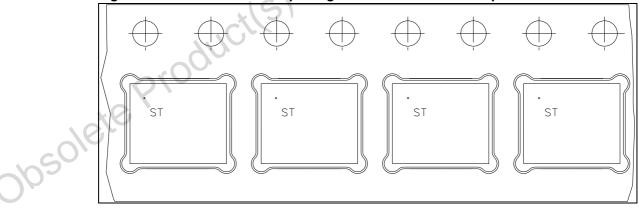



Figure 22. PowerFLAT™ 5x6 recommended footprint (dimensions in mm)



5 Packaging mechanical data

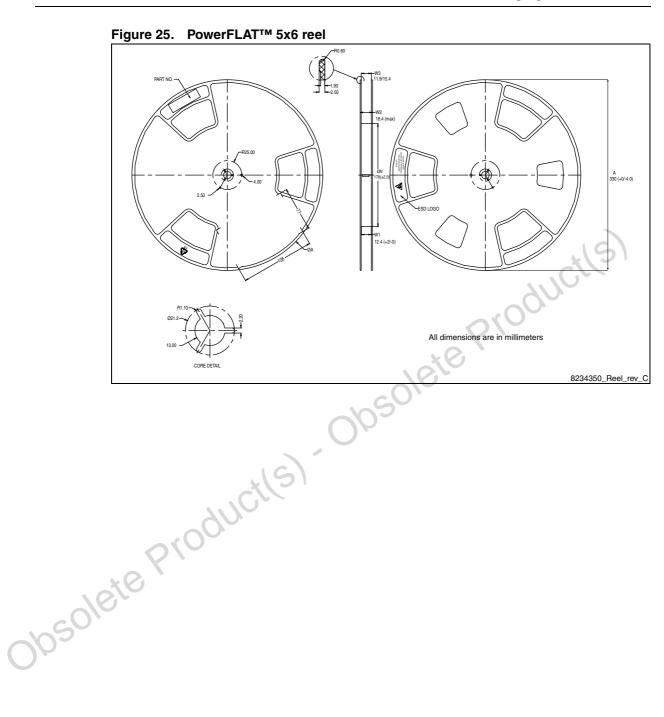


Figure 24. PowerFLAT™ 5x6 package orientation in carrier tape.

6 Revision history

Table 11. Document revision history

	Date	Revision	Changes
	02-Dec-2011	1	First release.
	13-Jan-2012	2	R _{DS(on)} values have been changed (see <i>Table 5: On/off states</i>).
	29-May-2012	3	Document status promoted from preliminary data to production data.
005018	tepro	ductle	becameri status promoted nom preliminary data to production data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

