

P-channel 60 V, 0.13 Ω typ., 12 A STripFETTM F6 Power MOSFET in a PowerFLATTM 5x6 package

Datasheet - production data

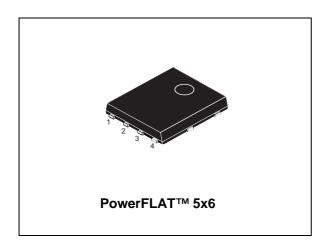
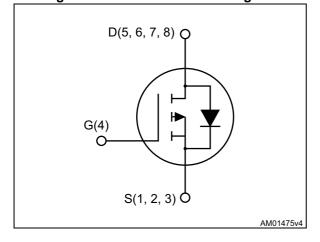



Figure 1. Internal schematic diagram

Features

Order code	V_{DS}	R _{DS(on)max}	I _D
STL12P6F6	60 V	0.16 Ω @ 10 V	12 A

- Very low on-resistance
- Very low gate charge
- · High avalanche ruggedness
- · Low gate drive power loss

Applications

· Switching applications

Description

This device is an P-channel Power MOSFET developed using the STripFET $^{\text{TM}}$ F6 technology, with a new trench gate structure. The resulting Power MOSFET exhibits a very low $R_{DS(on)}$ in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL12P6F6	12P6F6	PowerFLAT 5x6	Tape and reel

Note: For the P-channel Power MOSFET the actual polarity of the voltages and the current must be reversed.

July 2014 DocID024400 Rev 2 1/16

Contents STL12P6F6

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	8
4	Package mechanical data	9
5	Packaging mechanical data	13
6	Revision history	15

STL12P6F6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	12	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	8.5	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	48	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	4	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 100 °C	2.8	Α
P _{TOT} (1)	Total dissipation at T _C = 25 °C	75	W
P _{TOT} (3)	Total dissipation at T _{pcb} = 25 °C	4.8	W
T _j	Operating junction temperature	-55 to 175	°C
T _{stg}	Storage temperature	-55 10 175	

^{1.} The value is according to $\boldsymbol{R}_{thj\text{-case}}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	31.3	°C/W

^{1.} When mounted on FR-4 board of 15 mm², 2 Oz Cu, t<10 sec

Note:

For the P-channel Power MOSFET actual polarity of voltages and current has to be reversed.

^{2.} Pulse width is limited by safe operating area.

^{3.} The value is according to $R_{\mbox{\scriptsize thj-pcb}}$

Electrical characteristics STL12P6F6

2 Electrical characteristics

(Tcase = 25 °C unless otherwise specified).

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 250 \mu A$	60			V
Zero gate voltage	$V_{GS} = 0, V_{DS} = 60 \text{ V}$			1	μΑ	
I _{DSS}	drain current	V _{GS} = 0, V _{DS} = 60 V, T _C =125 °C			10	μА
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 1.5 A		0.13	0.16	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	340	-	pF
C _{oss}	Output capacitance	V _{GS} = 0, V _{DS} = 48 V, f = 1 MHz	-	40	-	pF
C _{rss}	Reverse transfer capacitance		-	20	-	pF
Qg	Total gate charge	V _{DD} = 30 V, I _D = 3 A, V _{GS} = 10 V	-	6.4	-	nC
Q _{gs}	Gate-source charge		-	1.7	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14)	-	1.7	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 48 \text{ V}, I_{D} = 1.5 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see <i>Figure 13</i>)	-	64	-	ns
t _r	Rise time		-	5.3	-	ns
t _{d(off)}	Turn-off delay time		-	14	-	ns
t _f	Fall time		-	3.7	1	ns

Note: For the P-channel Power MOSFET actual polarity of voltages and current has to be reversed.

4/16 DocID024400 Rev 2

Unit **Symbol Parameter Test conditions** Min. Тур. Max. I_{SD} Source-drain current 12 Α I_{SDM} (1) Source-drain current (pulsed) 48 Α V_{SD} (2) ٧ Forward on voltage $V_{GS} = 0, I_{SD} = 3 A$ 1.1 20 t_{rr} Reverse recovery time ns $I_{SD} = 5 A$, $di/dt = 100 A/\mu s$ Q_{rr} Reverse recovery charge $V_{DD} = 16 \text{ V}, T_i = 150 \text{ }^{\circ}\text{C}$ 17.8 nC _ (see Figure 15) Reverse recovery current 1.8 Α I_{RRM}

Table 7. Source drain diode

Note: For the P-channel Power MOSFET actual polarity of voltages and current has to be reversed.

^{1.} Pulse width limited by safe operating area.

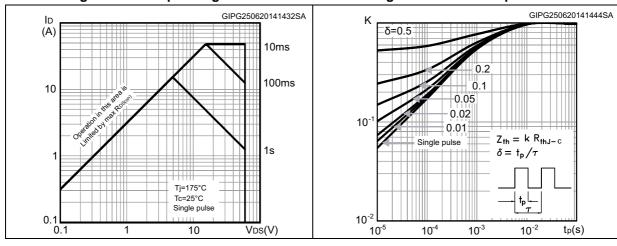
^{2.} Pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STL12P6F6

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance



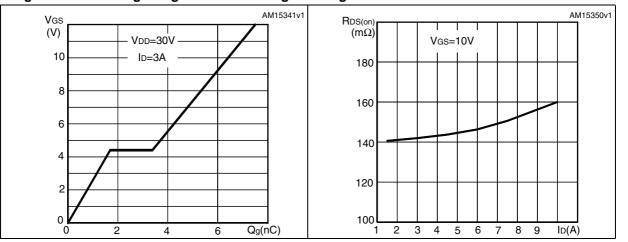
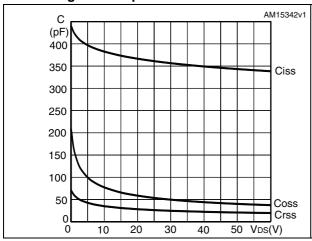

Figure 4. Output characteristics

Figure 5. Transfer characteristics

Figure 6. Gate charge vs gate-source voltage


Figure 7. Static drain-source on-resistance

6/16 DocID024400 Rev 2

Figure 8. Capacitance variations

Figure 9. Normalized $V_{(BR)DSS}$ vs temperature

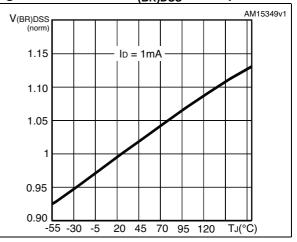
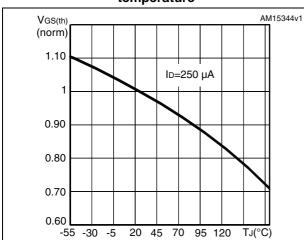



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

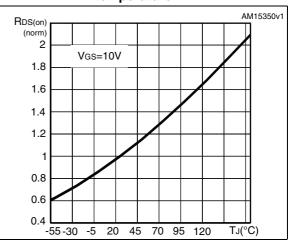
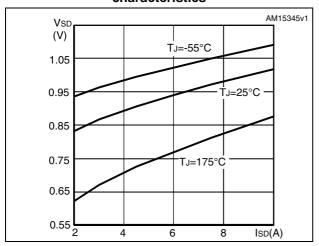



Figure 12. Source-drain diode forward characteristics

Test circuits STL12P6F6

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

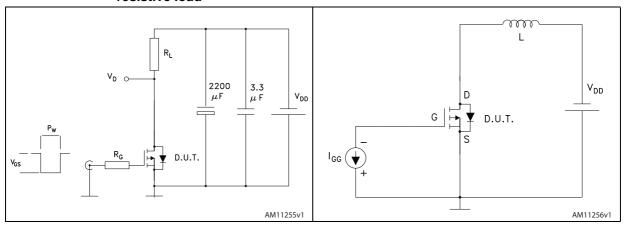
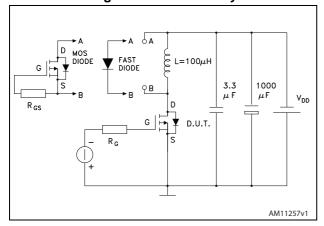



Figure 15. Test circuit for inductive load switching and diode recovery times

47/

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

DocID024400 Rev 2

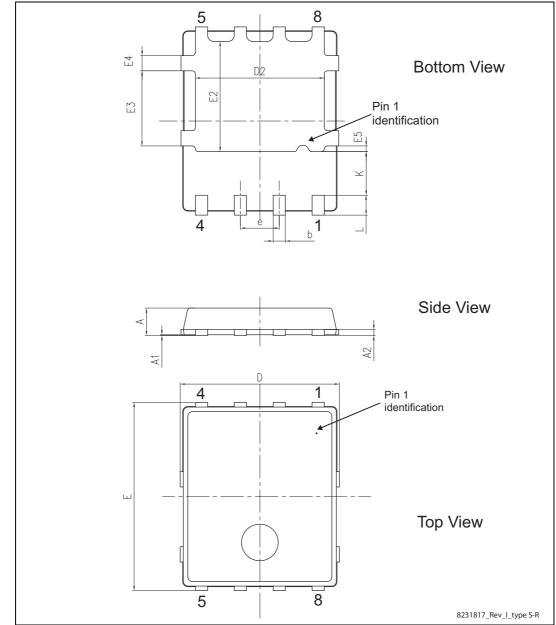


Figure 16. PowerFLAT™ 5x6 type S-R drawing

Table 8. PowerFLAT 5x6 type S-R mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
А	0.80		1.00			
A1	0.02		0.05			
A2		0.25				
b	0.30		0.50			
D	5.00	5.20	5.40			
D2	4.11		4.31			
E	5.95	6.15	6.35			
е		1.27				
E2	3.50		3.70			
E3	2.35		2.55			
E4	0.40		0.60			
E5	0.08		0.28			
K	1.275		1.575			
L	0.60		0.80			

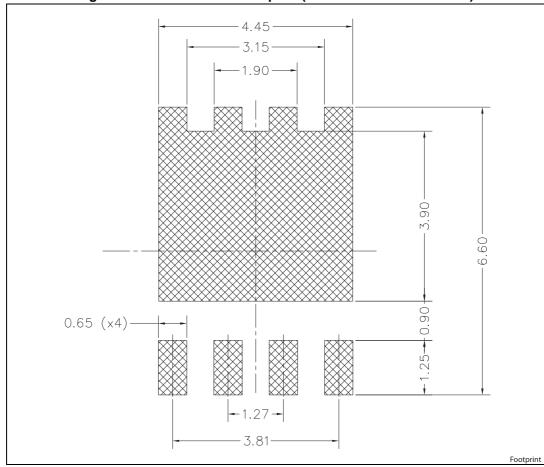
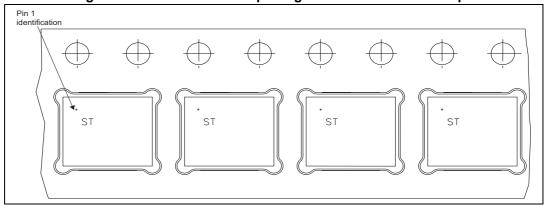


Figure 17. Recommended footprint (dimensions in millimeters)


47/

5 Packaging mechanical data

P₀ 4.0±0.1 (II) T (0.30±0.05) E₁ -- 1.75±0.1 Do Ø1.55±0.05 F(5.50±0.1)(III) W(12.00±0.3) P1(8.00±0.1) Ko (1.20±0.1) SECTION Y-Y (I) Measured from centerline of sprocket hole to centerline of pocket. Base and bulk quantity 3000 pcs (II) Cumulative tolerance of 10 sprocket holes is $\pm\ 0.20$.

Figure 18. PowerFLAT™ 5x6 tape^(a)

Figure 19. PowerFLAT™ 5x6 package orientation in carrier tape

(III) Measured from centerline of sprocket hole to centerline of pocket.

DocID024400 Rev 2

8234350_Tape_rev_C

a. All dimensions are in millimeters.

Figure 20. PowerFLAT™ 5x6 reel

14/16 DocID024400 Rev 2

STL12P6F6 Revision history

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
20-Mar-2013	1	First release.
14-Jul-2014	2	 Modified: I_D, and I_{DM} values in <i>Table 2</i> Modified: the entire typical values in <i>Table 6</i> Modified: I_{SD} and I_{SDM} max values in <i>Table 7</i> Added: <i>Section 2.1: Electrical characteristics (curves)</i> Updated: <i>Section 4: Package mechanical data</i> Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

400 Rev 2