

Datasheet

N-channel 600 V, 286 m Ω typ., 12 A MDmesh DM6 Power MOSFET in a DPAK package

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STD15N60DM6	600 V	338 mΩ	12 A

- · Fast-recovery body diode
- Lower R_{DS(on)} per area vs previous generation
- · Low gate charge, input capacitance and resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- · Zener-protected

Applications

· Switching applications

Description

lectronics sales office

This high-voltage N-channel Power MOSFET is part of the MDmesh DM6 fast-recovery diode series. Compared with the previous MDmesh fast generation, DM6 combines very low recovery charge (Q_{rr}), recovery time (t_{rr}) and excellent improvement in $R_{DS(on)}$ per area with one of the most effective switching behaviors available in the market for the most demanding high-efficiency bridge topologies and ZVS phase-shift converters.

Product status
STD15N60DM6

Product summary			
Order code	STD15N60DM6		
Marking	15N60DM6		
Package	DPAK		
Packing	Tape and reel		

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _C = 25 °C	12	A
I _D	Drain current (continuous) at T _C = 100 °C	7.3	_ A
I _{DM} ⁽¹⁾	Drain current (pulsed)	32	А
P _{TOT}	Total power dissipation at T _C = 25 °C	110	W
I _{AR} (2)	Avalanche current, repetitive or not repetitive	3	Α
E _{AS} (3)	Single pulse avalanche energy	240	mJ
dv/dt (4)	Peak diode recovery voltage slope	100	V/ns
di/dt ⁽⁴⁾	Peak diode recovery current slope	1000	A/µs
dv/dt (5)	MOSFET dv/dt ruggedness	100	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
TJ	Operating junction temperature range	-55 to 150	

- 1. Pulse width is limited by safe operating area.
- 2. Pulse width limited by T_J max.
- 3. Starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.
- 4. $I_{SD} \le 12 \text{ A}$, $V_{DS \text{ (peak)}} < V_{\text{(BR)DSS}}$, $V_{DD} = 400 \text{ V}$.
- 5. $V_{DS} \le 480 \text{ V}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	C/VV

1. When mounted on an 1-inch² FR-4, 2 Oz copper board.

DS13337 - Rev 1 page 2/17

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V	
I	Zana mata walta na duala awana	V _{GS} = 0 V, V _{DS} = 600 V			1		
I _{DSS}	Zero gate voltage drain current	V_{GS} = 0 V, V_{DS} = 600 V, T_{C} = 125 °C ⁽¹⁾			100	μΑ	
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μA	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	3.25	4	4.75	V	
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 6 A		286	338	mΩ	

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	607	-	
C _{oss}	Output capacitance	$V_{GS} = 100 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$	-	40	-	pF
C _{rss}	Reverse transfer capacitance		-	4	-	
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	100	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5.7	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 12 A, V _{GS} = 0 to 10 V	-	15.3	-	
Q _{gs}	Gate-source charge	(see Figure 14. Test circuit for gate		4.1	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	7.7	-	

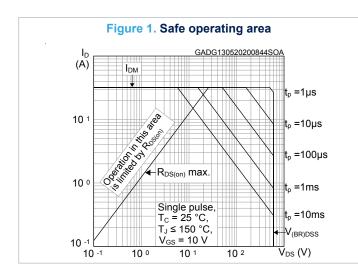
^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 6 A,	-	8.8	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	7.4	-	
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	29.2	-	ns
t _f	Fall time	Figure 18. Switching time waveform)	-	7.2	-	

DS13337 - Rev 1 page 3/17

Table 6. Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		12	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 12 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 12 A, di/dt = 100 A/μs,	-	85		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	0.268		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	6.3		Α
t _{rr}	Reverse recovery time	I _{SD} = 12 A, di/dt = 100 A/μs,	-	147		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	0.661		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	9		Α

^{1.} Pulse width is limited by safe operating area.

^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

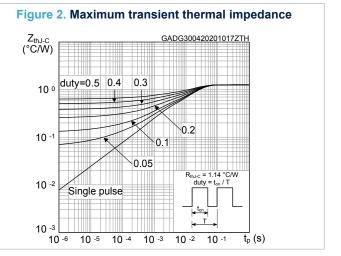
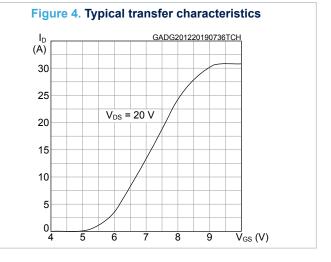
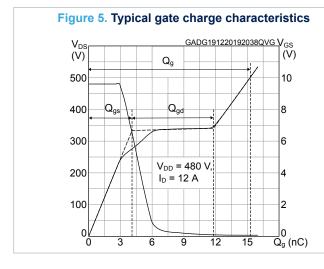
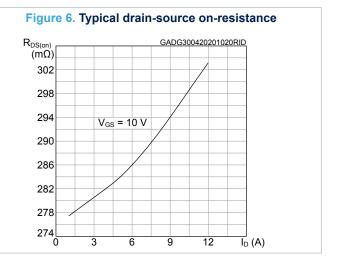


Figure 3. Typical output characteristics


(A)


(B)


(B)

(CA)

(CA

DS13337 - Rev 1 page 5/17

10 1

10 º

10 0

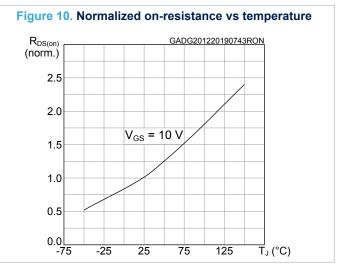
f = 1 MHz

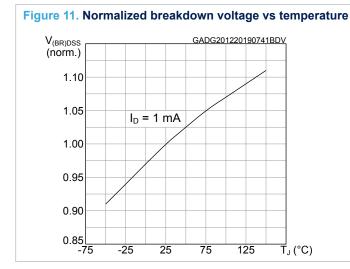
10 ¹

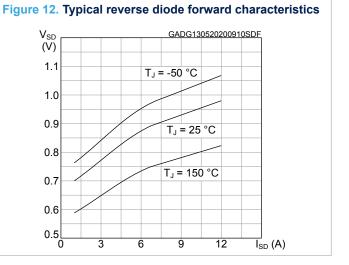
C GADG201220190738CVR 10 3 Clss

10 ²

Coss


C_{RSS}


 $\overline{V}_{DS}\left(V\right)$


Figure 8. Typical output capacitance stored energy

Eoss (μJ)
6
5
4
3
2
1
0
100 200 300 400 500 600 V_{DS} (V)

Figure 9. Normalized gate threshold vs temperature $V_{GS(th)}$ (norm.) GADG201220190743VTH 1.1 1.0 0.9 $I_D=250~\mu A$ 0.8 0.7 0.6 -75 -25 25 75 125 T_J (°C)

DS13337 - Rev 1 page 6/17

3 Test circuits

Figure 13. Test circuit for resistive load switching times

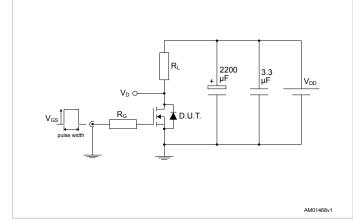


Figure 14. Test circuit for gate charge behavior

V_{GS}

Pulse width

2.7 kΩ

47 kΩ

AMD(469+10

Figure 15. Test circuit for inductive load switching and diode recovery times

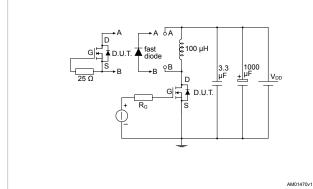


Figure 16. Unclamped inductive load test circuit

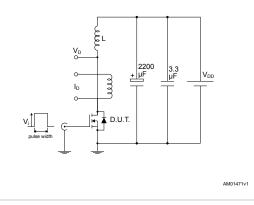


Figure 17. Unclamped inductive waveform

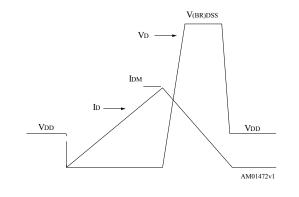
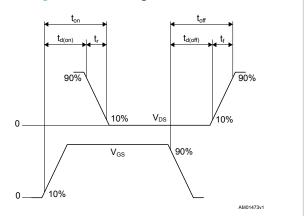
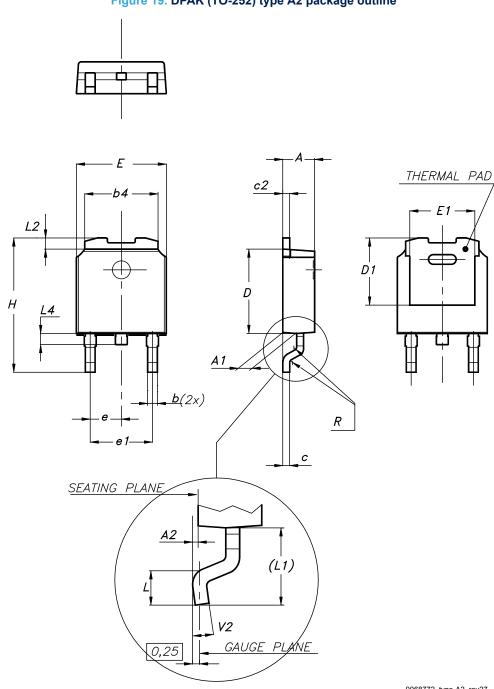



Figure 18. Switching time waveform

DS13337 - Rev 1 page 7/17



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

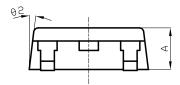
4.1 DPAK (TO-252) type A2 package information

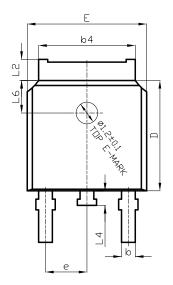
Figure 19. DPAK (TO-252) type A2 package outline

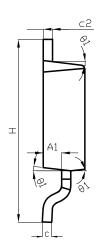
0068772_type-A2_rev27

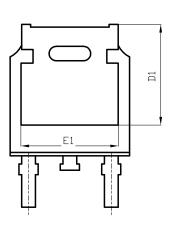
DS13337 - Rev 1 page 8/17

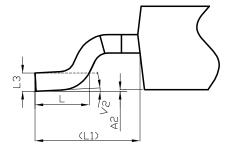
Table 7. DPAK (TO-252) type A2 mechanical data


Dim.		mm	
DIM.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.159	2.286	2.413
e1	4.445	4.572	4.699
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°


DS13337 - Rev 1 page 9/17




4.2 DPAK (TO-252) type C2 package information


Figure 20. DPAK (TO-252) type C2 package outline

0068772_type-C2_rev27

Downloaded from Arrow.com.

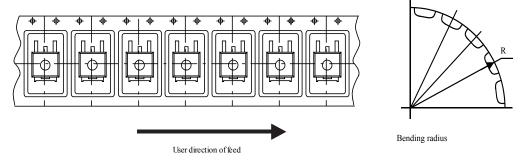
Table 8. DPAK (TO-252) type C2 mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	2.20	2.30	2.38
A1	0.90	1.01	1.10
A2	0.00		0.10
b	0.72		0.85
b4	5.13	5.33	5.46
С	0.47		0.60
c2	0.47		0.60
D	6.00	6.10	6.20
D1	5.10		5.60
Е	6.50	6.60	6.70
E1	5.20		5.50
е	2.186	2.286	2.386
Н	9.80	10.10	10.40
L	1.40	1.50	1.70
L1		2.90 REF	
L2	0.90		1.25
L3		0.51 BSC	
L4	0.60	0.80	1.00
L6		1.80 BSC	
θ1	5°	7°	9°
θ2	5°	7°	9°
V2	0°		8°

DS13337 - Rev 1 page 11/17

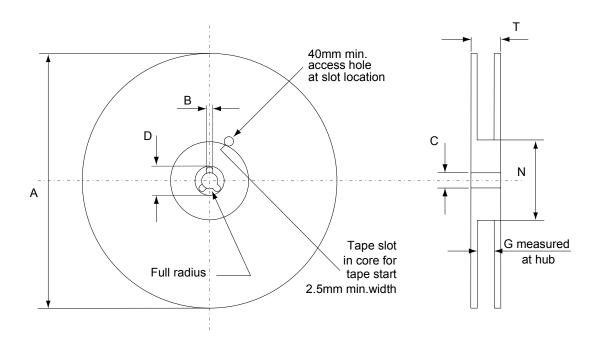
6.3 NIM 8: 1.5 4,572 = =


Figure 21. DPAK (TO-252) recommended footprint (dimensions are in mm)


FP_0068772_27

4.3 DPAK (TO-252) packing information

Figure 22. DPAK (TO-252) tape outline



AM08852v1

DS13337 - Rev 1 page 13/17

Figure 23. DPAK (TO-252) reel outline

AM06038v1

Table 9. DPAK (TO-252) tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim.		mm
Dim.	Min.	Max.	Dilli.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	e qty.	2500
P1	7.9	8.1	Bull	k qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

DS13337 - Rev 1 page 14/17

Revision history

Table 10. Document revision history

Date	Revision	Changes
19-May-2020	1	First release.

DS13337 - Rev 1 page 15/17

Contents

1	Elec	trical ratings	2		
2	Elec	trical characteristics	3		
	2.1				
3	Test	circuits			
4	Package information				
	4.1	DPAK (TO-252) type A2 package information	8		
	4.2	DPAK (TO-252) type C2 package information	10		
	4.3	DPAK (TO-252) packing information	13		
Rev	Revision history				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

DS13337 - Rev 1 page 17/17 Downloaded from Arrow.com.