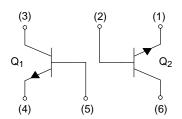
## **Dual General Purpose Transistor**

The NST3904DXV6T1G device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-563 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

#### **Features**

- h<sub>FE</sub>, 100-300
- Low  $V_{CE(sat)}$ ,  $\leq 0.4 \text{ V}$
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- AEC-Q101 Qualified and PPAP Capable NSVT3904DXV6T1G, SNST3904DXV6T5G
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These are Pb-Free Devices

## **MAXIMUM RATINGS**


| Rating                         |           | Symbol           | Value           | Unit |
|--------------------------------|-----------|------------------|-----------------|------|
| Collector - Emitter Voltage    |           | V <sub>CEO</sub> | 40              | Vdc  |
| Collector - Base Voltage       |           | V <sub>CBO</sub> | 60              | Vdc  |
| Emitter – Base Voltage         |           | V <sub>EBO</sub> | 6.0             | Vdc  |
| Collector Current – Continuous |           | I <sub>C</sub>   | 200             | mAdc |
| Electrostatic Discharge        | HBM<br>MM | ESD              | >16000<br>>2000 | V    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



## ON Semiconductor®

#### www.onsemi.com



NST3904DXV6T1

## MARKING DIAGRAM



SOT-563 CASE 463A STYLE 1



MA = Device Code

M = Date Code

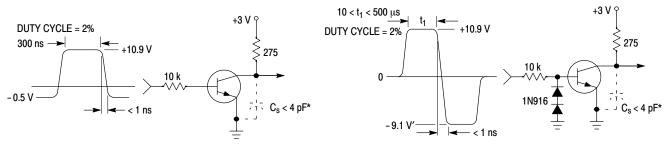
= Pb-Free Package
 (Note: Microdot may be in either location)

## **ORDERING INFORMATION**

| Device          | Package              | Shipping <sup>†</sup> |
|-----------------|----------------------|-----------------------|
| NST3904DXV6T1G  | SOT-563<br>(Pb-Free) | 4000/Tape &<br>Reel   |
| NSVT3904DXV6T1G | SOT-563<br>(Pb-Free) | 4000/Tape &<br>Reel   |
| NST3904DXV6T5G  | SOT-563<br>(Pb-Free) | 8000/Tape &<br>Reel   |
| SNST3904DXV6T5G | SOT-563<br>(Pb-Free) | 8000/Tape &<br>Reel   |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## THERMAL CHARACTERISTICS


| Characteristic (One Junction Heated)                                         | Symbol                            | Max         | Unit        |
|------------------------------------------------------------------------------|-----------------------------------|-------------|-------------|
| Total Device Dissipation T <sub>A</sub> = 25°C<br>Derate above 25°C (Note 1) | P <sub>D</sub>                    | 357<br>2.9  | mW<br>mW/°C |
| Thermal Resistance Junction-to-Ambient (Note 1)                              | $R_{	heta JA}$                    | 350         | °C/W        |
| Characteristic (Both Junctions Heated)                                       | Symbol                            | Max         | Unit        |
| Total Device Dissipation T <sub>A</sub> = 25°C<br>Derate above 25°C (Note 1) | P <sub>D</sub>                    | 500<br>4.0  | mW<br>mW/°C |
| Thermal Resistance, Junction-to-Ambient (Note 1)                             | $R_{	heta JA}$                    | 250         | °C/W        |
| Junction and Storage Temperature Range                                       | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150 | °C          |

<sup>1.</sup> FR-4 @ Minimum Pad

#### **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol                                                                  | Min                         | Max                | Unit               |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------|--------------------|------|--|
| OFF CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | 1                           | •                  | •                  | 1    |  |
| Collector - Emitter Breakdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>(BR)CEO</sub>                                                    | 40                          | _                  | Vdc                |      |  |
| Collector - Base Breakdown Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oltage ( $I_C = 10 \mu Adc, I_E = 0$ )                                  | V <sub>(BR)CBO</sub>        | 60                 | _                  | Vdc  |  |
| Emitter-Base Breakdown Volt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | age ( $I_E = 10 \mu Adc, I_C = 0$ )                                     | V <sub>(BR)EBO</sub>        | 6.0                | _                  | Vdc  |  |
| Base Cutoff Current (V <sub>CE</sub> = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vdc, V <sub>EB</sub> = 3.0 Vdc)                                         | I <sub>BL</sub>             | -                  | 50                 | nAdc |  |
| Collector Cutoff Current (V <sub>CE</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>CEX</sub>                                                        | -                           | 50                 | nAdc               |      |  |
| ON CHARACTERISTICS (Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e 2)                                                                    |                             | •                  |                    |      |  |
| $\begin{array}{l} \text{DC Current Gain} \\ \text{(I}_{C} = 0.1 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 1.0 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 10 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 50 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\ \text{(I}_{C} = 100 \text{ mAdc, V}_{CE} = 1.0 \text{ V} \\$ | h <sub>FE</sub>                                                         | 40<br>70<br>100<br>60<br>30 | -<br>300<br>-<br>- | _                  |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>CE(sat)</sub>                                                    | _<br>_                      | 0.2<br>0.3         | Vdc                |      |  |
| Base – Emitter Saturation Volta<br>( $I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mA}$<br>( $I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>BE(sat)</sub>                                                    | 0.65                        | 0.85<br>0.95       | Vdc                |      |  |
| SMALL-SIGNAL CHARACTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RISTICS                                                                 |                             |                    |                    |      |  |
| Current-Gain - Bandwidth Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oduct (I <sub>C</sub> = 10 mAdc, V <sub>CE</sub> = 20 Vdc, f = 100 MHz) | f <sub>T</sub>              | 300                | _                  | MHz  |  |
| Output Capacitance (V <sub>CB</sub> = 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>obo</sub>                                                        | -                           | 4.0                | pF                 |      |  |
| Input Capacitance (V <sub>EB</sub> = 0.5 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /dc, I <sub>C</sub> = 0, f = 1.0 MHz)                                   | C <sub>ibo</sub> –          |                    | 8.0                | pF   |  |
| Input Impedance (V <sub>CE</sub> = 10 Vd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h <sub>ie</sub>                                                         | 1.0<br>2.0                  | 10<br>12           | kΩ                 |      |  |
| Voltage Feedback Ratio (V <sub>CE</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h <sub>re</sub>                                                         | 0.5<br>0.1                  | 8.0<br>10          | X 10 <sup>-4</sup> |      |  |
| Small – Signal Current Gain (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h <sub>fe</sub>                                                         | 100<br>100                  | 400<br>400         | -                  |      |  |
| Output Admittance (V <sub>CE</sub> = 10 \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h <sub>oe</sub>                                                         | 1.0<br>3.0                  | 40<br>60           | μmhos              |      |  |
| Noise Figure (V <sub>CE</sub> = 5.0 Vdc, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NF                                                                      | -                           | 5.0<br>4.0         | dB                 |      |  |
| SWITCHING CHARACTERIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rics                                                                    | •                           | •                  | •                  | •    |  |
| Delay Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$                 | t <sub>d</sub>              | _                  | 35                 | ns   |  |
| Rise Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (I <sub>C</sub> = 10 mAdc, I <sub>B1</sub> = 1.0 mAdc)                  | t <sub>r</sub>              | -                  | 35                 |      |  |
| Storage Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc})$                     | t <sub>s</sub>              | -                  | 200                | no   |  |
| Fall Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$                                  | t <sub>f</sub>              | _                  | 50                 | - ns |  |

<sup>2.</sup> Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2.0%.



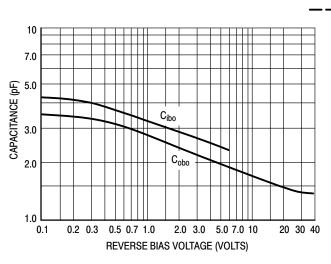

\* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

#### **TYPICAL TRANSIENT CHARACTERISTICS**

- T<sub>J</sub> = 25°C



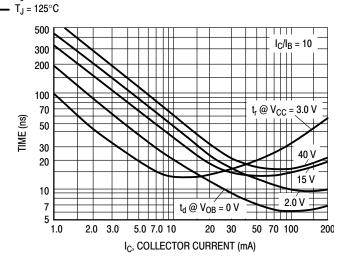
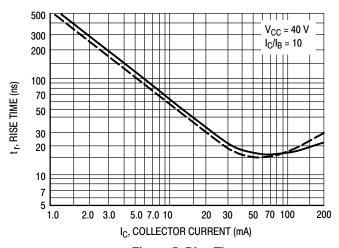




Figure 3. Capacitance

Figure 4. Turn - On Time





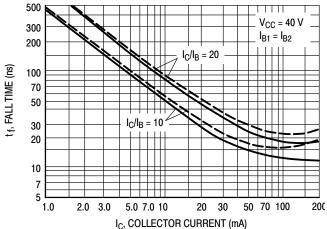
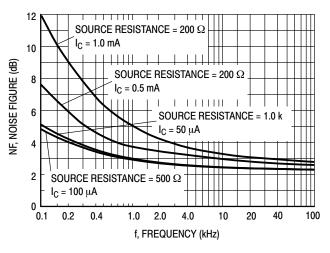




Figure 6. Fall Time

# TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$ 



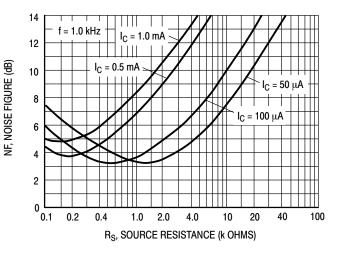
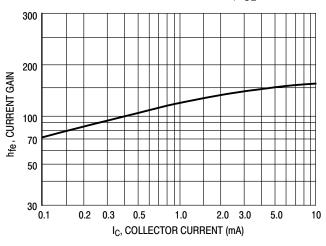




Figure 7. Noise Figure

Figure 8. Noise Figure

#### h PARAMETERS

 $(V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$ 



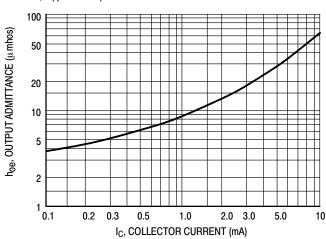



Figure 9. Current Gain

Figure 10. Output Admittance

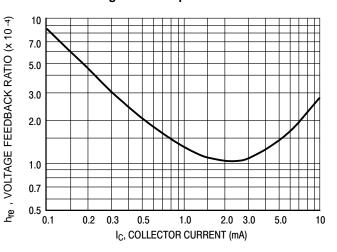



Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

## **TYPICAL STATIC CHARACTERISTICS**

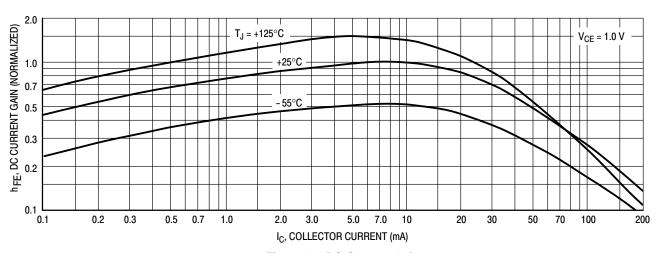



Figure 13. DC Current Gain

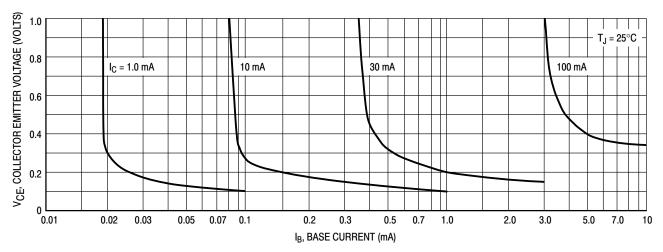



Figure 14. Collector Saturation Region

#### TYPICAL STATIC CHARACTERISTICS

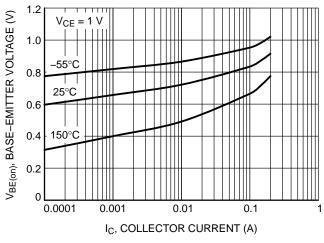
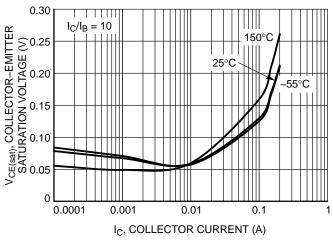




Figure 15. Base Emitter Voltage vs. Collector Current

Figure 16. Base Emitter Saturation Voltage vs. Collector Current



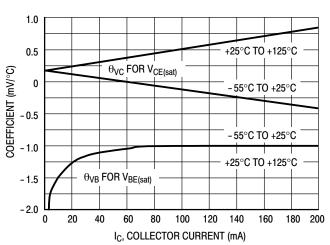
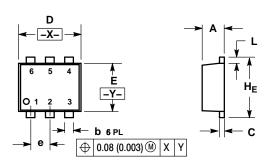




Figure 17. Collector Emitter Saturation Voltage vs. Collector Current

Figure 18. Temperature Coefficients

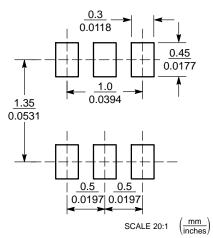
#### PACKAGE DIMENSIONS

**SOT-563, 6 LEAD** CASE 463A ISSUE F



#### NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.


|     | MILLIMETERS |      |      |       | INCHES   | 3     |
|-----|-------------|------|------|-------|----------|-------|
| DIM | MIN         | NOM  | MAX  | MIN   | NOM      | MAX   |
| Α   | 0.50        | 0.55 | 0.60 | 0.020 | 0.021    | 0.023 |
| b   | 0.17        | 0.22 | 0.27 | 0.007 | 0.009    | 0.011 |
| С   | 0.08        | 0.12 | 0.18 | 0.003 | 0.005    | 0.007 |
| D   | 1.50        | 1.60 | 1.70 | 0.059 | 0.062    | 0.066 |
| E   | 1.10        | 1.20 | 1.30 | 0.043 | 0.047    | 0.051 |
| е   | 0.5 BSC     |      |      | (     | 0.02 BS0 |       |
| L   | 0.10        | 0.20 | 0.30 | 0.004 | 0.008    | 0.012 |
| HE  | 1.50        | 1.60 | 1.70 | 0.059 | 0.062    | 0.066 |

## STYLE 1:

- PIN 1. EMITTER 1
  - 2. BASE 1 3. COLLECTOR 2
  - 4. EMITTER 2

  - 5 BASE 2 COLLECTOR 1

SOLDERING FOOTPRINT\*



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ NST3904DXV6T1/D