
SCTWA35N65G2V4AG

Datasheet

Automotive-grade silicon carbide Power MOSFET 650 V, 55 m Ω typ., 45 A in an HiP247-4 package

ND1TPS2DS3G4

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
SCTWA35N65G2V4AG	650 V	67 mΩ	45 A

- AEC-Q101 qualified
- Very fast and robust intrinsic body diode
- Low capacitances
- Source sensing pin for increased efficiency
- Very high operating junction temperature capability (T_J = 200 °C)

Applications

- Main inverter (electric traction)
- DC/DC converter for EV/HEV
- On board charger (OBC)

Description

This silicon carbide Power MOSFET device has been developed using ST's advanced and innovative 2nd generation SiC MOSFET technology. The device features remarkably low on-resistance per unit area and very good switching performance. The variation of switching loss is almost independent of junction temperature.

Product status link SCTWA35N65G2V4AG

Product summary		
Order code	SCTWA35N65G2V4AG	
Marking	SCT35N65G2VAG	
Package	HiP247-4	
Packing	Tube	

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V _{GS}	Gate-source voltage	-10 to 22	V
V GS	Gate-source voltage (recommended operating range)	-5 to 18	v
1-	Drain current (continuous) at T _C = 25 °C	45	- A
Ι _D	Drain current (continuous) at T _C = 100 °C	35	A .
I _{DM} ⁽¹⁾	Drain current (pulsed)	90	Α
P _{TOT}	Total power dissipation at T_C = 25 °C	240	W
T _{stg}	Storage temperature range	-55 to 200	°C
TJ	Operating junction temperature range	-55 (0 200	°C

Table 1. Absolute maximum ratings

1. Pulse width is limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	0.72	°C/W
R _{thJA}	Thermal resistance, junction-to-ambient	40	°C/W

2 Electrical characteristics

57

(T_C = 25 °C unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I _D = 1 mA	650			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 650 V			5	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = -10 to 22 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1.8	3.2	5	V
		V _{GS} = 20 V, I _D = 20 A		45	67	
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 18 V, I _D = 20 A		55		mΩ
		V_{GS} = 20 V, I _D = 20 A, T _J = 200 °C		68		

Table 3. On/off states

Table 4. Dynamic, based on HiP247 package option

Symbol	bol Parameter Test conditions		Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1370	-	pF
C _{oss}	Output capacitance V_{GS} = 0 V, V_{DS} = 400 V, f = 1 MHz		-	125	-	pF
C _{rss}	Reverse transfer capacitance		-	30	-	pF
Rg	Gate input resistance	f = 1 MHz, I _D = 0 A	-	2	-	Ω
Qg	Total gate charge		-	73	-	nC
Q _{gs}	Gate-source charge	V_{DD} = 400 V, I_{D} = 20 A, V_{GS} = 0 to 20 V	-	14	-	nC
Q _{gd}	Gate-drain charge		-	27	-	nC

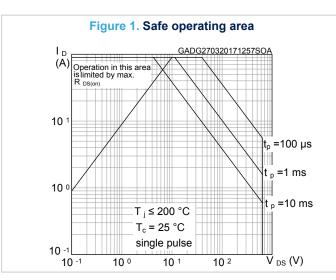
Table 5. Switching energy (inductive load), based on HiP247 package option

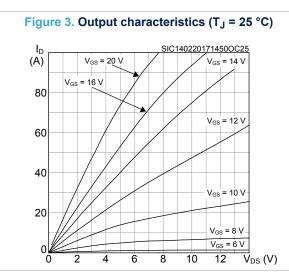
Symbol	Parameter	er Test conditions		Тур.	Max.	Unit
E _{on}	Turn-on switching energy	V _{DD} = 400 V, I _D = 20 A,	-	100	-	μJ
E _{off}	Turn-off switching energy	$\rm R_G$ = 4.7 $\Omega,\rm V_{GS}$ = -5 to 20 V	-	35	-	μJ

Table 6. Switching times, based on HiP247 package option

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	16	-	ns
t _f	Fall time	V _{DD} = 400 V, I _D = 20 A,	-	14	-	ns
t _{d(off)}	Turn-off delay time	${\sf R}_{G}$ = 4.7 $\Omega,$ ${\sf V}_{GS}$ = -5 to 20 V	-	35	-	ns
tr	Rise time		-	9	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD}	Forward on voltage	V_{GS} = 0 V, I _F = 20 A,	-	3.3	-	V
t _{rr}	Reverse recovery time			18	-	ns
Q _{rr}	Reverse recovery charge	V_{DD} = 400 V, I _F = 20 A, di/dt = 1000 A/µs	-	85	-	nC
I _{RRM}	Reverse recovery current		-	7	-	А


Table 7. Reverse diode characteristics, based on HiP247 package option

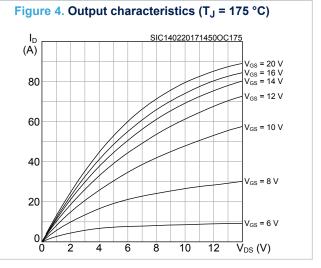
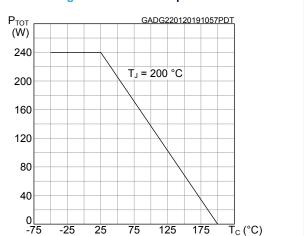
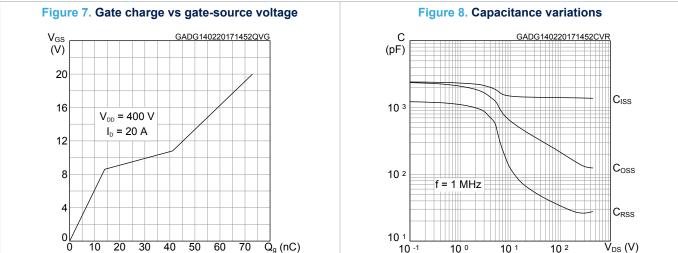

Figure 2. Normalized thermal impedance

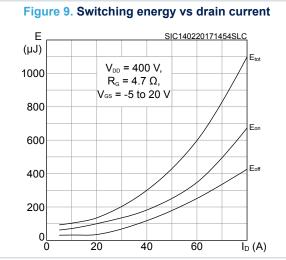
Κ

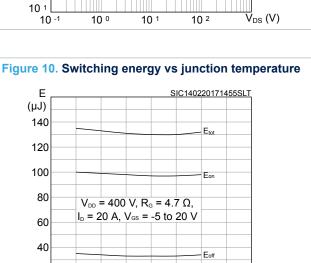
GADG270320171310ZTH

2.1 Electrical characteristics (curves), based on HiP247 package option

10⁻¹ 10⁻² 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ t_p(s)


Figure 5. Transfer characteristics Р_{тот} (W) GADG140220171450TCH Ι_D (A) 240 V_{DS} = 10 V 80 200 60 160 T_J = 175 °C 120 40 TJ = 25 °C 80 20 40 0L 0 0L -75 4 8 12 16 V_{GS} (V) -25 25 75


Figure 6. Power dissipation

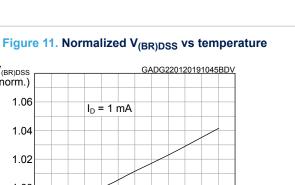
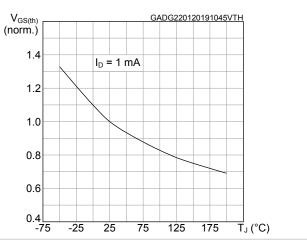
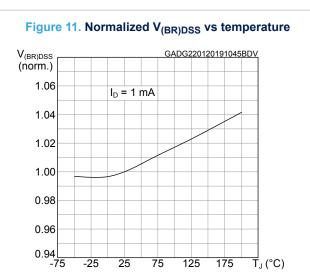
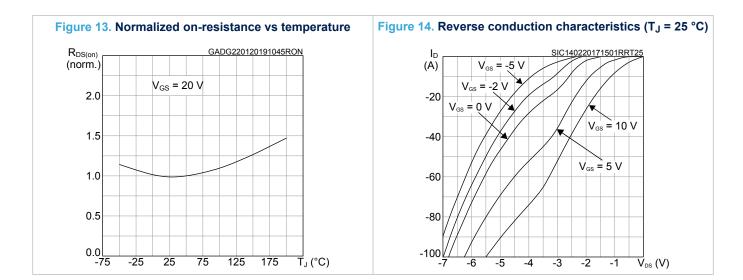


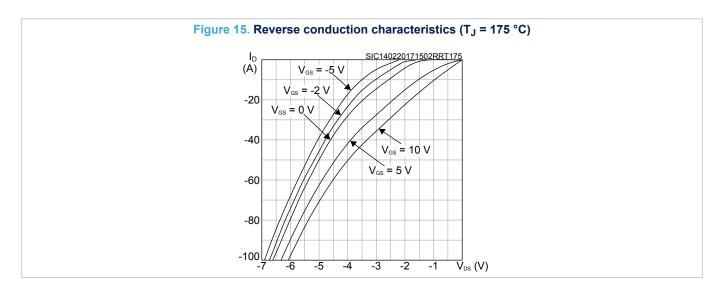
Figure 12. Normalized gate threshold voltage vs temperature

100

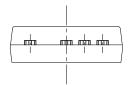

150

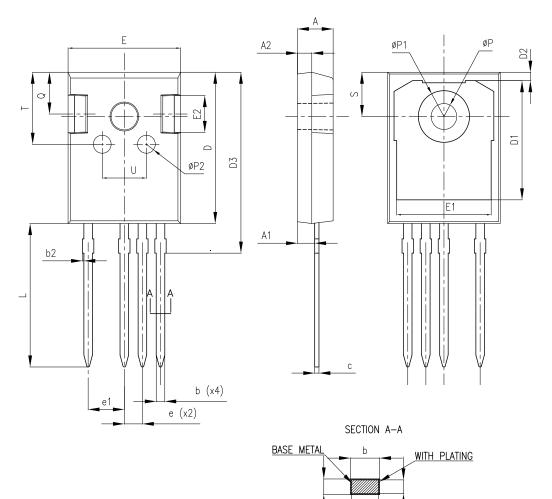

T」(°C)


20


0L 0

50


57


3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

3.1 HiP247-4 package information

ပ

5

b1

8405626_2

Table 8.	HiP247-4 mechanical data
	mm

Dim.	mm		
Dini.	Min.	Тур.	Max.
A	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.29
b1	1.15	1.20	1.25
b2	0		0.20
С	0.59		0.66
c1	0.58	0.60	0.62
D	20.90	21.00	21.10
D1	16.25	16.55	16.85
D2	1.05	1.20	1.35
D3	24.97	25.12	25.27
E	15.70	15.80	15.90
E1	13.10	13.30	13.50
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	2.44	2.54	2.64
e1	4.98	5.08	5.18
L	19.80	19.92	20.10
Р	3.50	3.60	3.70
P1			7.40
P2	2.40	2.50	2.60
Q	5.60		6.00
S		6.15	
Т	9.80		10.20
U	6.00		6.40

Revision history

Table 9. Document revision history

Date	Version	Changes
02-Dec-2020	1	First release.

Contents

1	Electrical ratings		2
2	Electrical characteristics		.3
	2.1	Electrical characteristics (curves), based on HiP247 package option	. 5
3	Package information		.8
	3.1	HiP247-4 package information	. 8
Rev	ision I	history	10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved