

STPSC20H12-Y

Datasheet

Automotive 1200 V, 20 A, silicon carbide power Schottky diode

Product status link	
STPSC20H12-Y	

Product summary				
I _{F(AV)}	20 A			
V _{RRM}	1200 V			
T _j (max.)	175 °C			
V _F (typ.)	1.35 V			

Features

- AEC-Q101 gualified
- No or negligible reverse recovery
- Switching behavior independent of temperature
- Robust high voltage periphery
- PPAP capable
- Operating T_i from -40 °C to 175 °C
- D²PAK HV creepage distance (anode to cathode) = 5.38 mm min.
- ECOPACK compliant

Applications

On board charger

Description

The SiC diode is an ultra high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 1200 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, the STPSC20H12-Y will boost performance in hard switching conditions. Its high forward surge capability ensures good robustness during transient phases.

1 Characteristics

57

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Paran	neter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage (T _j = -40 °C to +175 °C)		1200	V
I _{F(RMS)}	Forward rms current		38	Α
I _{F(AV)}	Average forward current	T _c = 155 °C, DC current	20	Α
I _{FRM}	Repetitive peak forward current	T _c =155 °C, T _j = 175 °C, δ = 0.1	78	Α
		t_p = 10 ms sinusoidal, T_c = 25 °C	140	
I _{FSM}	Surge non repetitive forward current	t_p = 10 ms sinusoidal, T_c = 150 °C	120	А
		t_p = 10 µs square, T _c = 25 °C	700	
T _{stg}	Storage temperature range		-55 to +175	°C
Тј	Operating junction temperature ⁽¹⁾		-40 to +175	°C

1. $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameters

Symbol	Parameter	Va	Unit	
		Тур.	Max.	Onit
R _{th(j-c)}	Junction to case	0.30	0.45	°C/W

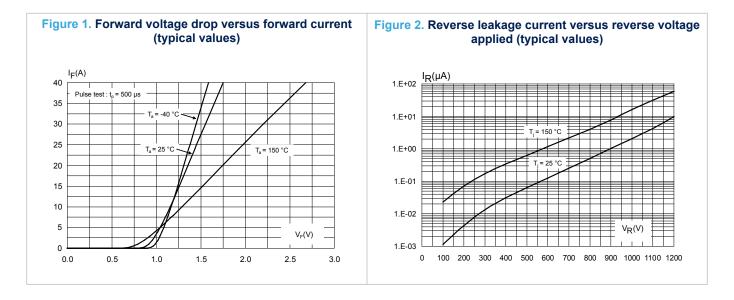
Table 3. Static electrical characteristics

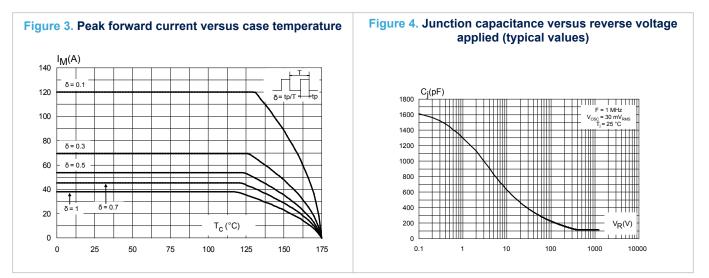
	Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
		T _j = 25 °C	V _R = V _{RRM}	-	10	120	μA	
IR C	Reverse leakage current	T _j = 150 °C		-	60	800		
	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	L = 20 A	-	1.35	1.50	V	
		Forward voltage drop	T _j = 150 °C	I _F = 20 A	-	1.75	2.25	v

1. Pulse test: $t_p = 5 ms, \, \delta < 2\%$

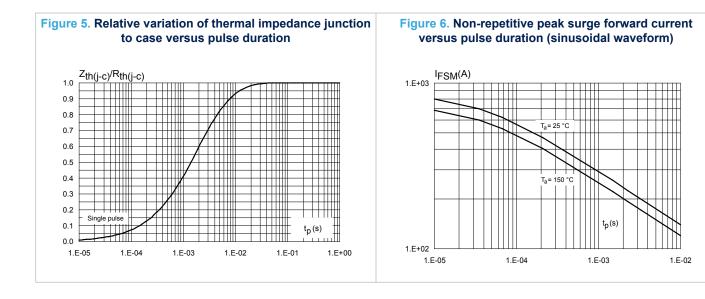
2. Pulse test: $t_p = 500 \ \mu s, \ \delta < 2\%$

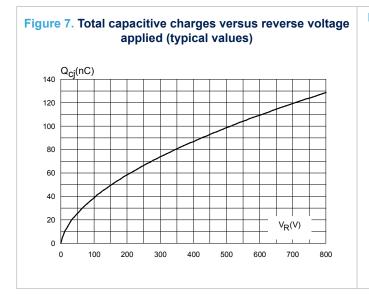
To evaluate the conduction losses, use the following equation: P = 1.07 x $I_{F(AV)}$ + 0.059 x I_{F}^{2} (RMS)


Table 4. Dynamic electrical characteristics


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Q _{Cj} ⁽¹⁾	Total capacitive charge	V _R = 800 V	-	129	-	nC
Cj	Tatal same site nos	V_{R} = 0 V, T _c = 25 °C, F = 1 MHz	-	1650	-	
	Total capacitance	V_{R} = 800 V, T_{c} = 25 °C, F = 1 MHz	-	110	-	pF
V_{P}						

Most accurate value for the capacitive charge: $Q_{cj}(V_R) = \int_0^{V_R} C_j(V) dV$




1.1 Characteristics (curves)

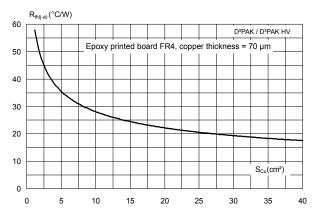
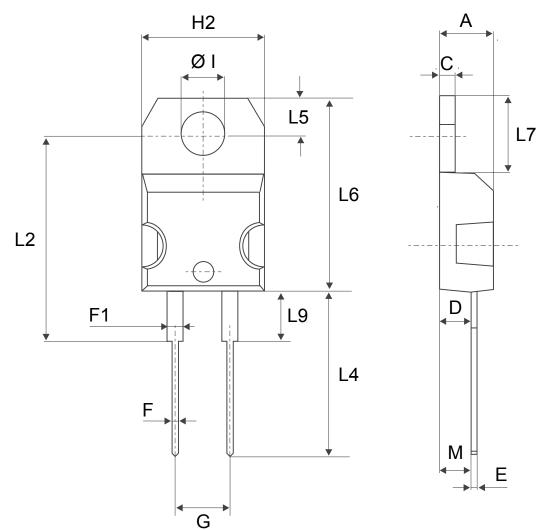


Figure 8. Thermal resistance junction to ambient versus copper surface under tab (typical values, epoxy printed board FR4, $e_{Cu} = 70 \ \mu m$)



2 Package information

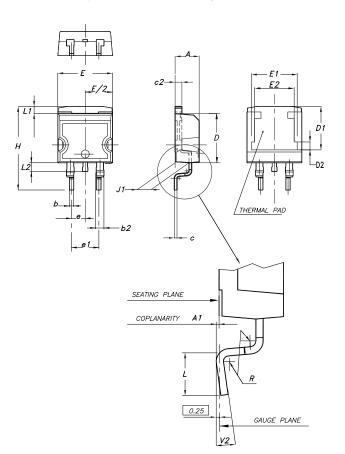
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 TO-220AC package information

- Epoxy meets UL 94,V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 N·m
- Maximum torque value: 0.70 N·m

Figure 9. TO-220AC package outline

	Dimensions					
Ref.	Millim	ieters	Inct	ies		
	Min.	Max.	Min.	Max.		
A	4.40	4.60	0.173	0.181		
С	1.23	1.32	0.048	0.051		
D	2.40	2.72	0.094	0.107		
E	0.49	0.70	0.019	0.027		
F	0.61	0.88	0.024	0.034		
F1	1.14	1.70	0.044	0.066		
G	4.95	5.15	0.194	0.202		
H2	10.00	10.40	0.393	0.409		
L2	16.40) typ.	0.645	typ.		
L4	13.00	14.00	0.511	0.551		
L5	2.65	2.95	0.104	0.116		
L6	15.25	15.75	0.600	0.620		
L7	6.20	6.60	0.244	0.259		
L9	3.50	3.93	0.137	0.154		
М	2.6 typ.		0.102	typ.		
ØI	3.75	3.85	0.147	0.151		

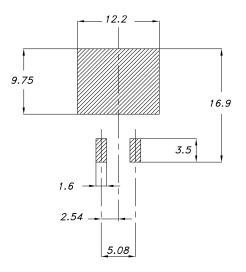

Table 5. TO-220AC package mechanical data

2.2 D²PAK package information

57

- Epoxy meets UL94, V0.
- Cooling method: by conduction (C)

Figure 10. D²PAK package outline

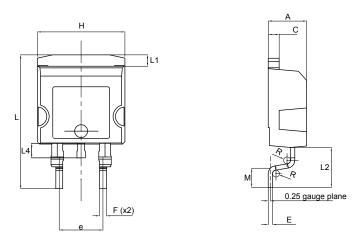

Table 6. D²PAK package mechanical data

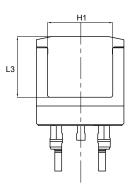
	Dimensions					
Ref.		Millimeters				
	Min.	Тур.	Max.	Min.	Тур.	Max.
A	4.40		4.60	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.70		0.93	0.028		0.037
b2	1.14		1.70	0.045		0.067
С	0.45		0.60	0.018		0.024
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	7.50	7.75	8.00	0.295	0.305	0.315
D2	1.10	1.30	1.50	0.043	0.051	0.060
E	10		10.40	0.394		0.409

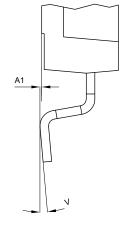
DS118	330 - Rev 4
Downloaded from	Arrow.com.

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
E1	8.30	8.50	8.70	0.326	0.335	0.343	
E2	6.85	7.05	7.25	0.266	0.278	0.282	
е		2.54			0.100		
e1	4.88		5.28	0.190		0.205	
Н	15		15.85	0.591		0.624	
J1	2.49		2.69	0.097		0.106	
L	2.29		2.79	0.090		0.110	
L1	1.27		1.40	0.049		0.055	
L2	1.30		1.75	0.050		0.069	
R		0.4			0.015		
V2	0°		8°	0°		8°	

Figure 11. D²PAK recommended footprint (dimensions are in mm)

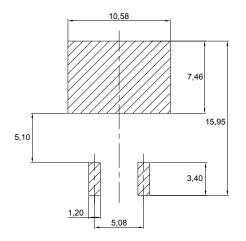



Footprint


2.3 D²PAK high voltage package information

57

Figure 12. D²PAK high voltage package outline

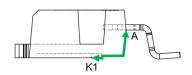


Ref.		Dimensions	
Kei.	Min.	Тур.	Max.
A	4.30		4.70
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
E	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30		15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
М	2.6		2.9
R	0.20		0.60
V	0°		8°

Table 7. D²PAK high voltage package mechanical data

Figure 13. D²PAK High Voltage footprint in mm

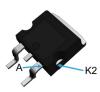
2.3.1 Creepage distance between Anode and Cathode


Table 8. Creepage distance between anode and cathode

Symbol	Parameter			
Cd _{A-K1}	Minimum creepage distance between A and K1 (with top coating)	D ² PAK HV	5.38	mm
Cd _{A-K2}	Minimum creepage distance between A and K2 (without top coating)		3.48	11111

Note: D²PAK HV creepage distance (anode to cathode) = 5.38 mm min. (refer to IEC 60664-1)

Figure 14. Creepage with top coating


Creepage

Minimum distance between A & K1 = 5.38 mm (with top coating)

Figure 15. Creepage without top coating

Creepage

Minimum distance between A & K2 = 3.48 mm (without top coating)

3 Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC20H12DY	STPSC20H12DY	TO-220AC	1.86 g	50	Tube
STPSC20H12GY-TR	STPSC20H12GY	D ² PAK	1.48 g	1000	Tape and reel
STPSC20H12G2Y-TR	SC20H12G2Y	D ² PAK HV	1.48 g	1000	Tape and reel

Table 9. Ordering information

Revision history

Table 10. Document revision history

Date	Revision	Changes
05-Jan-2017	1	Initial release.
23-Jan-2017	2	Added D ² PAK package.
18-Dec-2017	3	Updated cover image.
02-May-2019	4	Added D ² PAK HV package.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved