

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

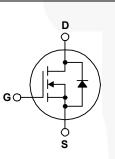
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

SEMICONDUCTOR

November 2013

FQD7N30 N-Channel QFET® MOSFET

300 V, 5.5 A, 700 m Ω


Description

This N-Channel enhancement mode power MOSFET is • 5.5 A, 300 V, $R_{DS(on)}$ = 700 m Ω (Max.) @ V_{GS} = 10 V, produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state D = 2.75 A Low Gate Charge (Typ. 13 nC) resistance, and to provide superior switching performance . Low Crss (Typ. 12 pF) and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power • 100% Avalanche Tested factor correction (PFC), and electronic lamp ballasts.

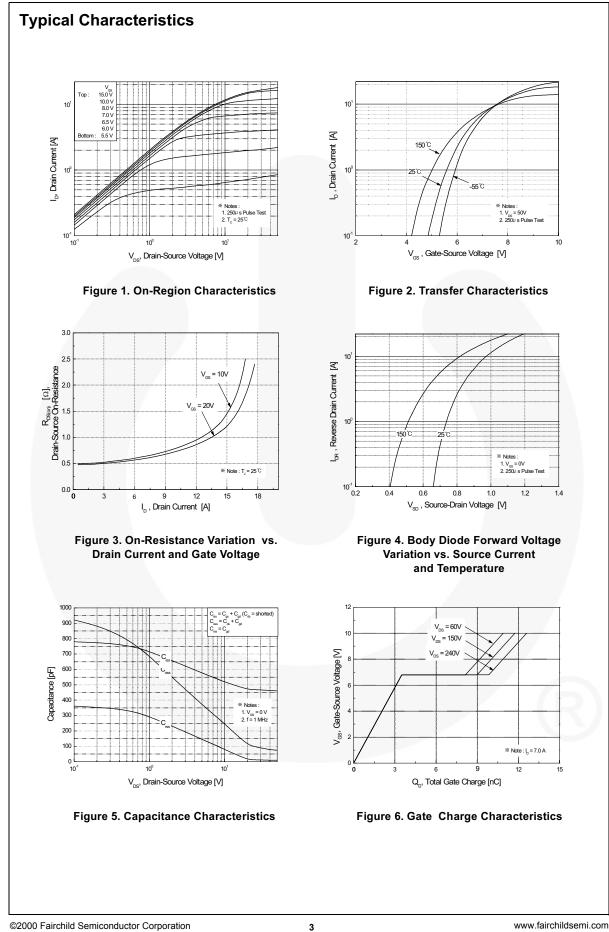
Features

- I_D = 2.75 A

Absolute Maximum Ratings T_c = 25°C unless otherwise noted.

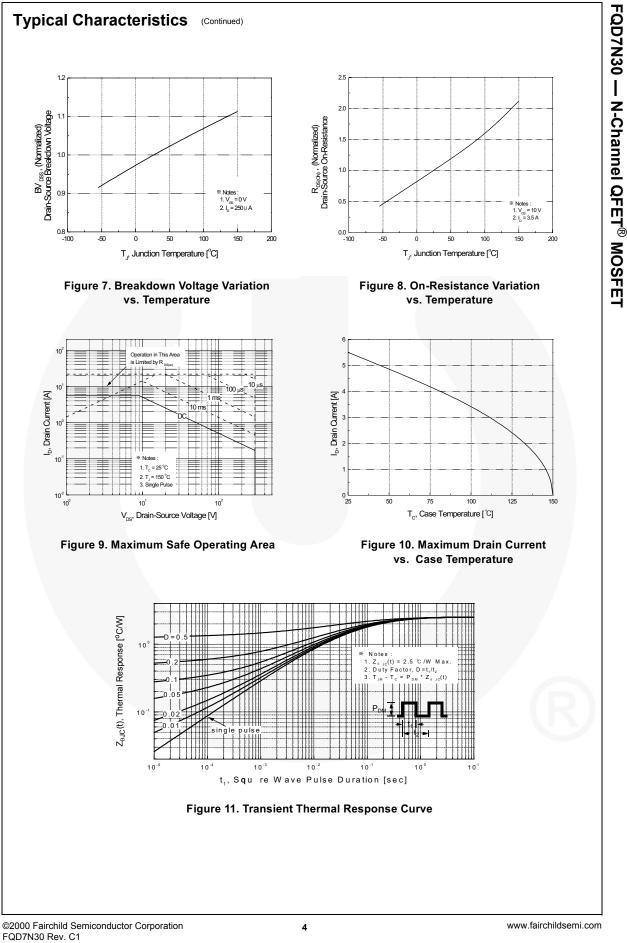
Symbol	Parameter		FQD7N30TM	Unit
V _{DSS}	Drain-Source Voltage		300	V
ID	Drain Current - Continuous (T _C = 25°C)		5.5	А
	- Continuous (T _C = 100°C)		3.48	А
I _{DM}	Drain Current - Pulsed	(Note 1)	22	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		380	mJ
I _{AR}	Avalanche Current	(Note 1)	5.5	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation (T _A = 25°C) *		2.5	W
	Power Dissipation (T _C = 25°C)		50	W
	- Derate above 25°C		0.4	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds.		300	°C

Thermal Characteristics

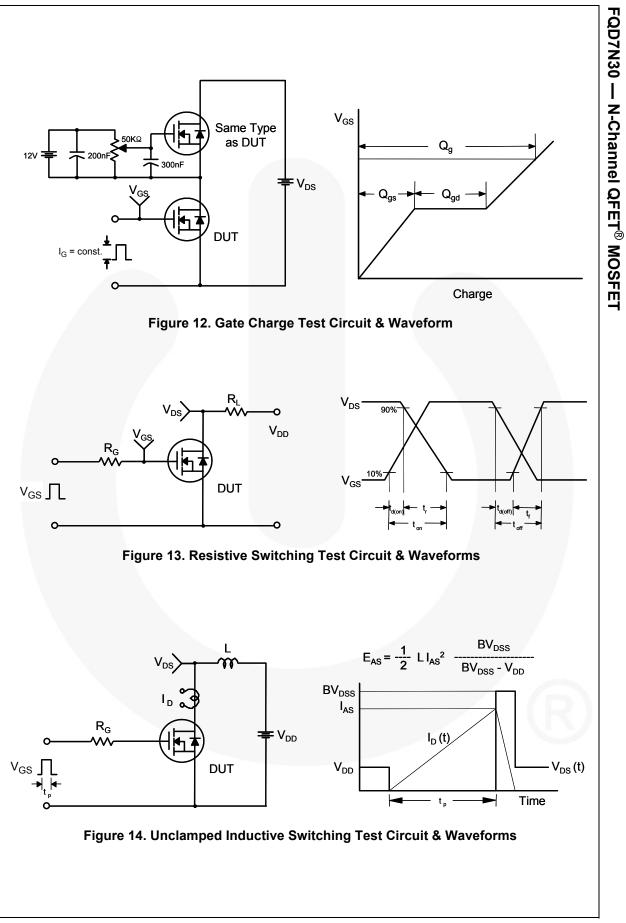

Symbol	Parameter	FQD7N30TM	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	2.5		
Б	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50		

FQD7N30 — N-Channel QFET[®] MOSFET

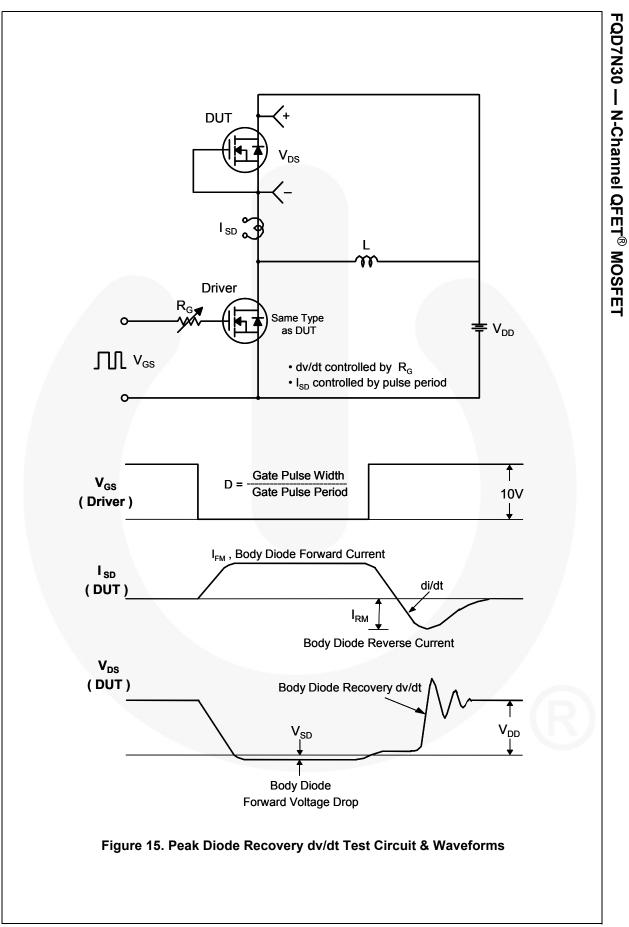
©2000 Fairchild Semiconductor Corporation FQD7N30 Rev. C1

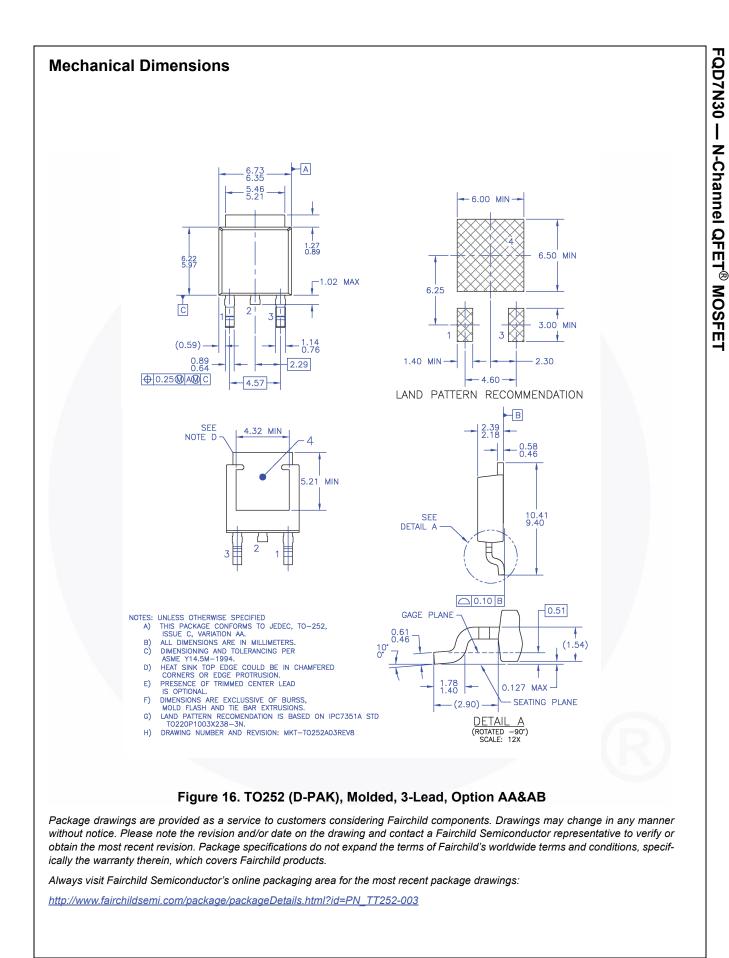

Symbol Off Character BV _{DSS} Drair ΔBV _{DSS} Brea /ΔT Coef ^I DSS Zero ^I GSSF Gate ^I GSSR Gate ^I GSSR Gate ^V GS(th) Gate ^R DS(on) Static On-F On-F ^g FS Forw Dynamic Ch Ciss Coss Outp	Characteristics Parameter Pristics -Source Breakdown Vol down Voltage Tempera icient Gate Voltage Drain Cur Body Leakage Current, Body Leakage Current,	Itage ature rrent , Forward , Reverse	$V_{GS} =$ $I_D = 25$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{DS} =$ $V_{DS} =$	herwise noted. Test Conditions $0 \text{ V}, \text{ I}_{\text{D}} = 250 \mu\text{A}$ $50 \mu\text{A}, \text{ Referenced}$ $300 \text{ V}, \text{ V}_{\text{GS}} = 0 \text{ V}$ $240 \text{ V}, \text{ T}_{\text{C}} = 125^{\circ}\text{C}$ $30 \text{ V}, \text{ V}_{\text{DS}} = 0 \text{ V}$ $-30 \text{ V}, \text{ V}_{\text{DS}} = 0 \text{ V}$ $V_{\text{GS}}, \text{ I}_{\text{D}} = 250 \mu\text{A}$ $10 \text{ V}, \text{ I}_{\text{D}} = 2.75 \text{ A}$ $50 \text{ V}, \text{ I}_{\text{D}} = 2.75 \text{ A}$ $25 \text{ V}, \text{ V}_{\text{GS}} = 0 \text{ V},$	to 25°C	Min. 300 3.0 3.0	Typ. 0.3 0.53 4.0	Max 1 10 100 -100 5.0 0.7 	- Unit V'°C μΑ μΑ ηΑ ηΑ ν Ω S
Symbol Off Character BV _{DSS} Drain ΔBV _{DSS} Brea /ΔT Coef ΔBV _{DSS} Zero ΔSSF Gate GSSF Gate VGS(th) Gate RDS(on) Static On-F Forw PFS Forw Dynamic Ch Ciss Ciss Input Crss Rever	Parameter eristics -Source Breakdown Vol cdown Voltage Tempera icient Gate Voltage Drain Cur Body Leakage Current, Body Leakage Current, ristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	Itage ature rrent , Forward , Reverse	$V_{GS} =$ $I_D = 25$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{DS} =$ $V_{DS} =$	Test Conditions 0 V, I _D = 250 μA 50 μA, Referenced 300 V, V _{GS} = 0 V 240 V, T _C = 125°C 30 V, V _{DS} = 0 V -30 V, V _{DS} = 0 V V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A	to 25°C	300 3.0 	 0.3 0.53	 1 100 -100 5.0 0.7	V V/°C μA nA nA V/°C
Off Characte BV_{DSS} Drain ΔBV_{DSS} Brea $/ \Delta T$ Coef $ DSS$ Zero $ GSSF$ Gate $ GSSR$ Gate $ GSSR$ Gate $QSSR$ Gate $QSSR$ Static On Characte On-Fr $V_{GS(th)}$ Gate $R_{DS(on)}$ Static QFS Forw Dynamic Ch Ciss C_{oss} Outp C_{rss} Rever	eristics -Source Breakdown Vol kdown Voltage Tempera icient Gate Voltage Drain Cur Body Leakage Current, Body Leakage Current, Body Leakage Current, Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	rrent , Forward , Reverse	$I_{D} = 25$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{DS} =$ $V_{DS} =$ $V_{DS} =$	0 V, I _D = 250 μA 50 μA, Referenced 300 V, V _{GS} = 0 V 240 V, T _C = 125°C 30 V, V _{DS} = 0 V -30 V, V _{DS} = 0 V V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A	to 25°C	300 3.0 	 0.3 0.53	 1 100 -100 5.0 0.7	V V/°C μA nA nA V/°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-Source Breakdown Vo kdown Voltage Tempera icient Gate Voltage Drain Cur Body Leakage Current, Body Leakage Current, Pristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	rrent , Forward , Reverse	$I_{D} = 25$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{DS} =$ $V_{DS} =$ $V_{DS} =$	50 μA, Referenced 300 V, V _{GS} = 0 V 240 V, T _C = 125°C 30 V, V _{DS} = 0 V -30 V, V _{DS} = 0 V V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A		 3.0 	0.3 0.53	 1 100 -100 5.0 0.7	V/°C μA ηA nA NA V/°C
ΔBV _{DSS} Brea / ΔT Coef /DSS Zero GSSF Gate GSSR Gate GS(th) Gate RDS(on) Statio On-F On-F GFS Forw Dynamic Ch Ciss Input Coss Outp Crss Rever	kdown Voltage Tempera icient Gate Voltage Drain Cur Body Leakage Current, Body Leakage Current, ristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	rrent , Forward , Reverse	$I_{D} = 25$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $V_{DS} =$ $V_{DS} =$ $V_{DS} =$	50 μA, Referenced 300 V, V _{GS} = 0 V 240 V, T _C = 125°C 30 V, V _{DS} = 0 V -30 V, V _{DS} = 0 V V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A		 3.0 	0.3 0.53	 1 100 -100 5.0 0.7	V/°C μA ηA nA NA V/°C
/ ΔT Coef DSS Zero GSSF Gate GSSR Gate Con Character VGS(th) Gate RDS(on) Static On-F GFS Forw Dynamic Ch Ciss Input Coss Outp Crss Reve	icient Gate Voltage Drain Cur Body Leakage Current, Body Leakage Current, ristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	rrent , Forward , Reverse	$V_{DS} = V_{DS} = V_{GS} = V_{GS} = V_{GS} = V_{DS} = V$	300 V, V _{GS} = 0 V 240 V, T _C = 125°C 30 V, V _{DS} = 0 V -30 V, V _{DS} = 0 V V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A		 3.0 	 0.53	1 100 -100 5.0 0.7	μΑ μΑ nA nA V
Zero I _{GSSF} Gate I _{GSSR} Gate On Characte V _{GS(th)} Gate R _{DS(on)} Station On-F 9FS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Revent	Body Leakage Current, Body Leakage Current, Fristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	, Forward , Reverse	$V_{DS} = V_{GS} = V_{GS} = V_{DS} = V$	240 V, $T_{C} = 125 ^{\circ}C$ 30 V, $V_{DS} = 0$ V -30 V, $V_{DS} = 0$ V V_{GS} , $I_{D} = 250 \mu$ A 10 V, $I_{D} = 2.75$ A 50 V, $I_{D} = 2.75$ A		 3.0 	 0.53	10 100 -100 5.0 0.7	μA nA nA V
I _{GSSR} Gate On Characte V _{GS(th)} Gate R _{DS(on)} Statio On-F 9FS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Reve	Body Leakage Current, ristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance	, Reverse	$V_{GS} =$ $V_{DS} =$ $V_{GS} =$ $V_{DS} =$	-30 V, V _{DS} = 0 V V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A		 3.0 	0.53	-100 5.0 0.7	nA V Ω
I _{GSSR} Gate On Characte V _{GS(th)} Gate R _{DS(on)} Statio On-F 9FS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Reve	ristics Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance		V _{DS} = V _{GS} = V _{DS} =	V _{GS} , I _D = 250 μA 10 V, I _D = 2.75 A 50 V, I _D = 2.75 A		3.0	0.53	5.0 0.7	VΩ
V _{GS(th)} Gate R _{DS(on)} Static ØFS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Rever	Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance		V _{GS} = V _{DS} = V _{DS} =	10 V, I _D = 2.75 A 50 V, I _D = 2.75 A			0.53	0.7	Ω
V _{GS(th)} Gate R _{DS(on)} Static ØFS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Rever	Threshold Voltage Drain-Source esistance ard Transconductance aracteristics Capacitance ut Capacitance		V _{GS} = V _{DS} = V _{DS} =	10 V, I _D = 2.75 A 50 V, I _D = 2.75 A			0.53	0.7	Ω
R _{DS(on)} Static On-F 9FS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Reve	ard Transconductance aracteristics Capacitance ut Capacitance		V _{GS} = V _{DS} = V _{DS} =	10 V, I _D = 2.75 A 50 V, I _D = 2.75 A			0.53	0.7	Ω
gFS Forw Dynamic Ch C _{iss} Input C _{oss} Outp C _{rss} Reve	ard Transconductance aracteristics Capacitance ut Capacitance		V _{DS} =	50 V, I _D = 2.75 A			4.0		S
C _{iss} Input C _{oss} Outp C _{rss} Reve	Capacitance ut Capacitance	_		25 V, V _{GS} = 0 V,					
C _{iss} Input C _{oss} Outp C _{rss} Reve	Capacitance ut Capacitance			25 V, V _{GS} = 0 V,					
C _{oss} Outp C _{rss} Reve	ut Capacitance	_		$25 V, V_{GS} = 0 V,$			470	610	pF
C _{rss} Reve				MHz			100	130	pF
		re l	1 - 1.0				12	16	pF
d(on) Turn	On Delay Time	_	V _{DD} =	150 V, I _D = 7.0 A,			13	35	ns
	On Rise Time	_	R _G = 2	25 Ω			75	160	ns
u(011)	Off Delay Time Off Fall Time		-		(Note 4)		25 35	60 80	ns
	Gate Charge						13	17	ns
	Source Charge		V _{DS} = 1 V _{GS} =	240 V, I _D = 7.0 A,			3.4	17	nC
	Drain Charge		VGS -		(Note 4)		6.4		nC
	-Drain Charge				(0.4		
	e Diode Character num Continuous Drain-			•	5			5.5	•
0	num Pulsed Drain-Sour							5.5 22	A
0	-Source Diode Forward			0 V, I _S = 5.5 A				1.5	V
	rse Recovery Time	, voltage		0 V, I _S = 7.0 A,			150		ns
	rse Recovery Charge			t = 100 A/μs			0.74		μC
L = 21 mH, I_{AS} = 5.5 $I_{SD} \le 7.0$ A, di/dt ≤ 20	se-width limited by maximum ju A, V _{DD} = 50 V, R _G = 25 Ω , start 10 A/µs , V _{DD} ≤ BV _{DSS} , starting ent of operating temperature.	ting T _J = 25°C							

FQD7N30 — N-Channel QFET[®] MOSFET



©2000 Fairchild Semiconductor Corporation FQD7N30 Rev. C1


FQD7N30 — N-Channel QFET[®] MOSFET



Downloaded from Arrow.com.

5

Rev. 166

QD7N30 ---

N-Channel QFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.