

MOSFET – P-Channel, POWERTRENCH®

-30 V, -14.5 A, 7.8 m Ω

FDS6673BZ, FDS6673BZ-G

General Description

This P-Channel MOSFET is produced using **onsemi**'s advanced Power Trench process that has been especially tailored to minimize the on-state resistance.

This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

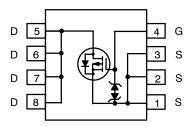
Features

- Max $R_{DS(on)} = 7.8 \text{ m}\Omega$ @ $V_{GS} = -10 \text{ V}$, $I_D = -14.5 \text{ A}$
- Max $R_{DS(on)} = 12 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$, $I_D = -12 \text{ A}$
- Extended V_{GS} Range (-25 V) for Battery Applications
- HBM ESD Protection Level of 6.5 kV Typical (Note 3)
- High Performance Trench Technology for Extremely Low R_{DS(on)}
- High Power and Current Handling Capability
- Pb-Free, Halide Free and RoHS Compliant

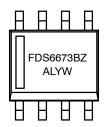
ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	-30	V
V_{GS}	Gate to Source Voltage	±25	V
I _D	Drain Current - Continuous (Note 1a) - Pulsed	-14.5 -75	Α
P _D	Maximum Power dissipation (Note 1a) (Note 1b) (Note 1c)	2.5 1.2 1.0	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	50	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case (Note 1)	25	°C/W

SOIC8 CASE 751EB

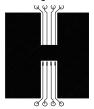
MARKING DIAGRAM

FDS6673BZ = Specific Device Code
A = Assembly Side
L = Wafer Lot Number
YW = Assembly Start Week

ORDERING INFORMATION

Device	Package	Shipping [†]
FDS6673BZ	SOIC8 (Pb-Free/ Halide Free)	2500 / Tape & Reel
FDS6673BZ-G	SOIC8 (Pb–Free/ Halide Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted.

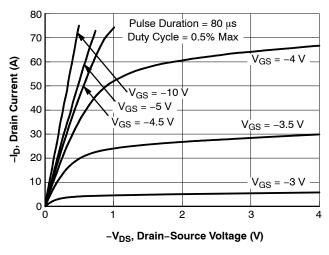
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30	-	-	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C	-	-20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V	-	-	-1	μΑ
I _{GSS}	Gate-Body Leakage	V _{GS} = ±25 V, V _{DS} = 0 V	_	-	±10	μΑ
ON CHARAC	TERISTICS (Note 2)					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1	-1.9	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25°C	-	8.1	-	mV/°C
R _{DS(on)}	Drain to Source On–Resistance	I _D = -14.5 A, V _{GS} = -10 V,	-	6.5	7.8	mΩ
. ,		I _D = -12 A, V _{GS} = -4.5 V	-	9.6	12	
		$I_D = -14.5 \text{ A}, V_{GS} = -10 \text{ V},$ $T_J = 125^{\circ}\text{C}$	-	9.7	12	
9 _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -14.5 \text{ A}$	_	60	_	S
DYNAMIC CH	HARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$	_	3500	4700	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	-	600	800	
C _{rss}	Reverse Transfer Capacitance		_	600	900	
SWITCHING	CHARACTERISTICS (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -15 \text{ V}, I_D = -1 \text{ A},$	_	14	26	ns
t _r	Rise Time	$V_{GS} = -10 \text{ V}, R_{GS} = 6 \Omega$	-	16	29	
t _{d(off)}	Turn-Off Delay Time		-	225	36	
t _f	Fall Time		-	105	167	
Q_g	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -14.5 \text{ A}, V_{GS} = -10 \text{ V}$	-	88	124	nC
Q_g	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -14.5 \text{ A},$ $V_{GS} = -5 \text{ V}$	-	46	65	nC
Q _{gs}	Gate-Source Charge		-	8	_	
Q_{gd}	Gate-Drain Charge		-	23.5	_	
DRAIN-SOU	RCE DIODE CHARACTERISTICS AND MA	AXIMUM RATINGS				
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.1 \text{ A}$	-	-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = 14.5 A, di/dt = 100 A/μs	-	-	45	ns
Q _{rr}	Reverse Recovery Charge	I _F = 14.5 A, di/dt = 100 A/μs	-	-	34	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES

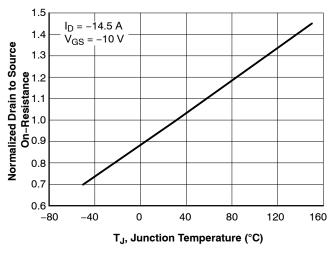
1. $R_{\theta JA}$ is the sum of the junction–to–case and case–to–ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 50°C/W (10 sec) when mounted on a 1 in² pad of 2 oz. copper.


b) 105°C/W when mounted on a 0.04 in² pad of 2 oz. copper.

b) 125°C/W when mounted on a minimum pad.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.


TYPICAL CHARACTERISTICS

Pulse Duration = 80 us 3.8 $V_{GS} = -3.5 \text{ V}$ Duty Cycle = 0.5% Max Normalized Drain to Source 3.4 3.0 On-Resistance 2.6 V_{GS} -4 V 2.2 -4.5 V $V_{GS} =$ 1.8 1.4 V_{GS} -5 V 1.0 –10 V $V_{GS} =$ 0.6 10 40 50 60 80 20 30 70 -I_D, Drain Current (A)

Figure 1. On Region Characteristics

Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

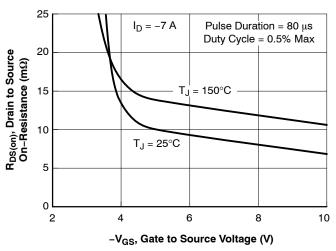
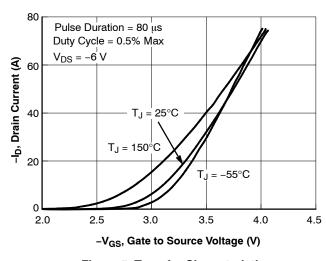



Figure 3. Normalized On–Resistance vs. Junction Temperature

Figure 4. On-Resistance vs. Gate to Source Voltage

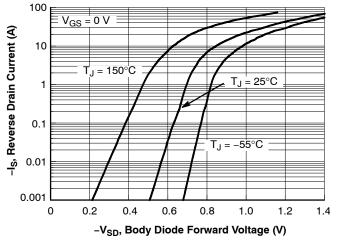
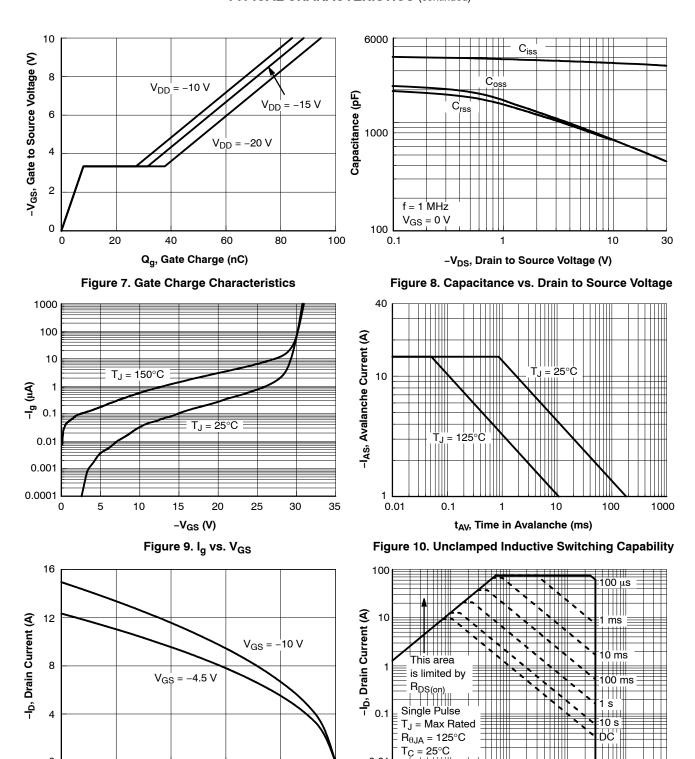



Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (continued)

T_A, Ambient Temperature (°C)
Figure 11. Maximum Continuous Drain Current vs
Ambient Temperature

100

125

75

-V_{DS}, Drain to Source Voltage (V)

Figure 12. Single Pulse Maximum Power Dissipation

100

500

150

0.01

0.01

0.1

0

25

50

TYPICAL CHARACTERISTICS (continued)

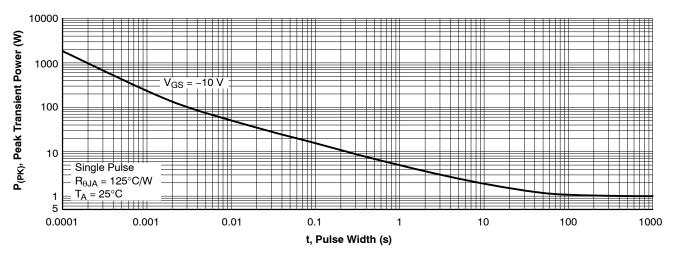


Figure 13. Single Pulse Maximum Power Dissipation

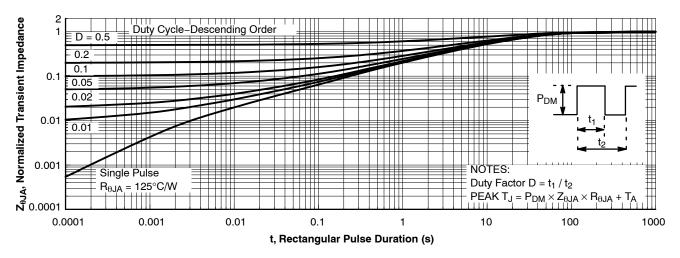
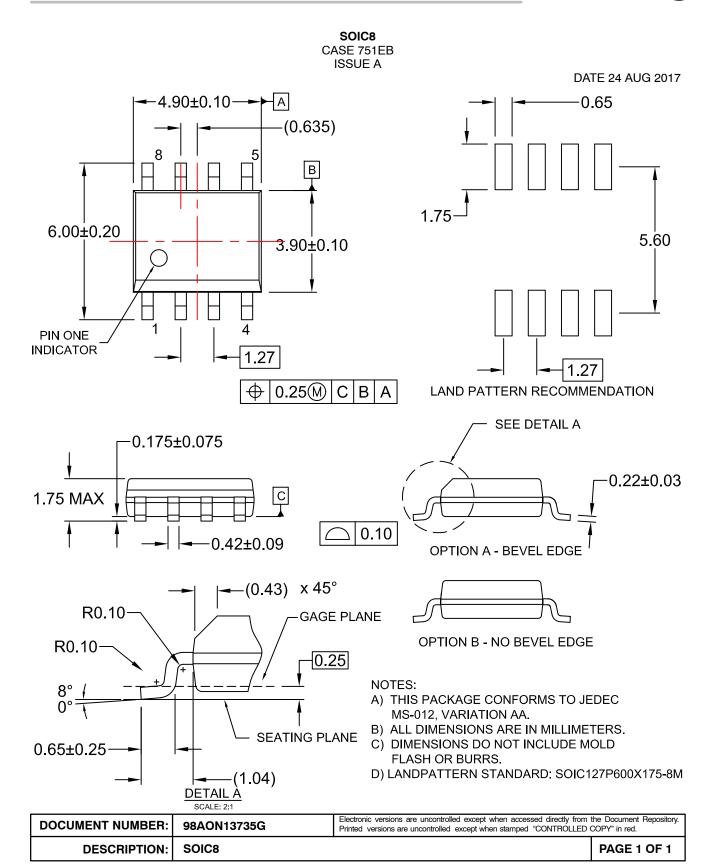



Figure 14. Junction-to-Ambient Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond