

Aerospace 0.3 A - 100 V switching diode

Datasheet - production data

Description

This power ultrafast recovery rectifier is designed and packaged to comply with the ESCC5000 specification for aerospace products. It is housed in a surface mount hermetically sealed LCC2D package whose footprint is 100% compatible with industry standard solutions in D5A.

The 1N6642U is suitable for switching mode power supplies and high frequency DC to DC converters such as low voltage high frequency inverter, free wheeling or polarity protection.

Features

- · Surface mount hermetic package
- High thermal conductivity materials
- Very small conduction losses
- · Negligible switching losses
- Extremely fast switching
- Low forward voltage drop
- Target radiation qualification
 - 150 krad (Si) low dose rate
 - 3 Mrad (Si) high dose rate
- Package mass: 0.12 g

Table 1. Device summary⁽¹⁾

Order code	ESCC detailed specification	Quality level	Lead finish	EPPL	I _{F(AV)}	V _{RRM}	T _{j(max)}	VF _(max)
1N6642UD1		Engineering model	Gold					
1N6642U01D	5101/026/07	ESCC	Gold	Yes	0.3	100	175	1,2
1N6642U02D	5101/026/08	ESCC	Solder dip	Yes				

^{1.} Contact ST sales office for information about the specific conditions for products in die form.

Characteristics 1N6642U

1 Characteristics

Table 2. Absolute ratings (limiting values)

Symbol	Parameter		Value	Unit
V_{RRM}	Repetitive peak reverse voltage		100	V
I _{F(RMS)}	Forward rms current		0.5	Α
I _{F(AV)}	Average forward rectified current (1)	300	mA	
I _{FSM}	Forward surge current $t_{p} = 8.3 \text{ ms sinusoidal}, \\ t_{amb} \le 25 \text{ °C}$		2	А
T _{stg}	Storage temperature range	Storage temperature range		
T _j	Operating junction temperature range	-65 to +175	°C	
T _{sol}	Maximum soldering temperature (2)		245	°C

^{1.} For all variants at $T_c \! \geq \! +155$ °C per diode, derate linearly to 0 A at +175 °C.

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th (j-c)}	Junction to case (1)	60	°C/W
R _{th (j-a)}	Junction to ambient	280	C/VV

^{1.} Package mounted on infinite heatsink

Table 4. Static electrical characteristics

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
V _{BR} ⁽¹⁾	Breakdown voltage	T _j = 25 °C	I _R = 100 μA	100	-	-	V
		T _j = 25 °C	V _R = 20 V	-	-	25	nA
(1)	I _R ⁽¹⁾ Reverse current	T _j = 25 °C	V _R = 75 V	-	-	50	nA
'R '		T _j = 150 °C	V _R = 20 V	-	-	30	μΑ
		T _j = 150 °C	V _R = 75 V	-	-	40	μΑ
		T _j = 25 °C	I _F = 10 mA	-	-	800	
V _F ⁽²⁾	Forward voltage	T _j = 25 °C	I _F = 100 mA	-	-	1200	mV
VF`		T _j = 150 °C	I _F = 10 mA	-	-	800	1117
		T _j = -55 °C	I _F = 100 mA	-	-	1200	

^{1.} Pulse test: $t_p = 10 \text{ ms}$, $\delta < 2\%$

To evaluate the conduction losses use the following equation:

$$P = 0.74 \times I_{F(AV)} + 1.00 \times I_{F^{2}(RMS)}$$

57

^{2.} Maximum duration 5 s. The same package must not be re-soldered until 3 minutes have elapsed.

^{2.} Pulse test: t_p = 680 μ s, δ < 2%

1N6642U Characteristics

Table 5.	Dynamic	characteristics
I abic J.	Dynanic	cital actoristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ŧ	Reverse recovery time	$I_F = I_R = 10 \text{ mA}^{(1)}$	-	-	9	ns
t _{rr}	Theverse recovery time	$I_F = 1 \text{ A}, V_r = 30 \text{ V}, \text{ dI/dt} = -15 \text{ A/}\mu\text{s}$	-	-	20	113
V _{FP}	Forward recovery voltage	I _{FM} = 200 mA	-	-	5	V
t _{FR}	Forward recovery time	I _{FM} = 200 mA	-	-	20	ns
C _i Diode capacitance		V _R = 0 V, V = 50 mV, F = 1 MHz	-	-	5	nE.
C _j	Diode capacitatice	V _R = 1.5 V, V = 50 mV, F = 1 MHz	-	-	2.8	pF

^{1.} Guaranteed but not tested

Figure 1. Forward voltage drop versus forward current (typical values)

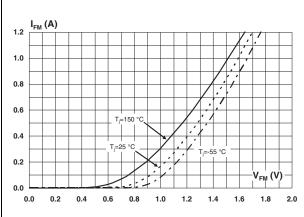


Figure 2. Forward voltage drop versus forward current (maximum values)

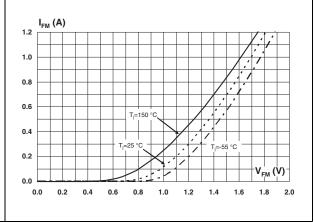


Figure 3. Reverse leakage current versus reverse voltage applied (typical values)

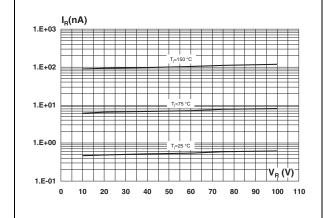
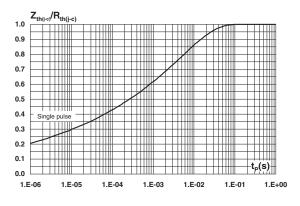
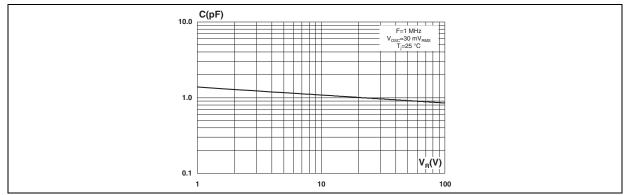




Figure 4. Relative variation of thermal impedance, junction to case, versus pulse duration

Characteristics 1N6642U

Figure 5. Junction capacitance versus reverse voltage applied (typical values)

57/

4/9 DocID16972 Rev 4

1N6642U Package information

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 Leadless chip carrier 2 (LCC2D) package information

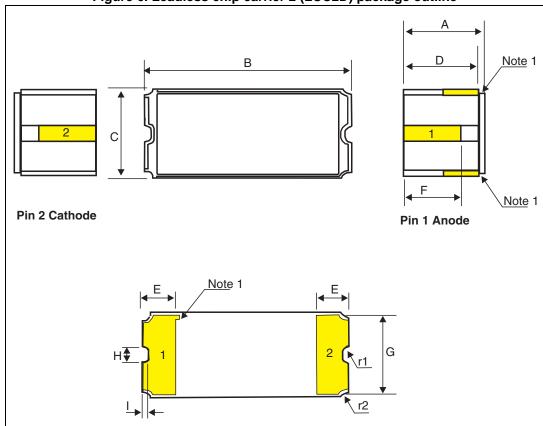


Figure 6. Leadless chip carrier 2 (LCC2D) package outline

1. The anode is identified by metalization in two top internal angles and the index mark.

DocID16972 Rev 4

Package information 1N6642U

Table 6. Leadless chip carrier 2 (LCC2D) package mechanical data

			Dimer	nsions		
Ref.		Millimeters		Inche		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A ⁽¹⁾	1.86	2.03	2.20	0.073	0.080	0.087
В	4.44	4.57	4.77	0.175	0.180	0.188
С	1.84	1.97	2.10	0.072	0.078	0.083
D	1.53	1.70	1.87	0.060	0.067	0.074
Е	0.48	-	0.71	0.019	-	0.028
F	-	1.3	-	-	0.051	-
G	-	1.67	-	-	0.066	-
Н	-	0.37	-	-	0.015	-
ı	-	0.15	-	-	0.006	-
r1	-	0.15	-	-	0.006	-
r2	-	0.20	-	-	0.008	-

^{1.} Measurement prior to solder coating the mounting pads on bottom of package

3 Ordering information

Table 7. Ordering information⁽¹⁾

Order code	ESCC detailed specification	Package	Lead finish	Marking ⁽²⁾	EPPL	Mass	Packing
1N6642UD1	-		Gold	1N6642UD1	-		
1N6642U01D	5101/026/07	LCC2D	Gold	510102607	Υ	0.12 g	Waffle pack
1N6642U02D	5101/026/08		Solder dip	510102608	Y		

^{1.} Contact ST sales office for information about the specific conditions for products in die form.

For the engineering models: ST logo, date code, country of origin (FR).

For ESCC flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

4 Other information

4.1 Date code

Date code is structured as describe below:

- EM xyywwz
- ESCC flight yywwz

Where:

- x (EM only): 3, assembly location Rennes (France)
- yy: last two digits year
- ww: week digits
- z: lot index in the week

4.2 Documentation

In Table 8 is a summary of the documentation provided with each type of products.

Table 8. Documentation provided with each type of products

Quality level	Documentation
Engineering model	
ESCC flight	Certificate of conformance

^{2.} Specific marking only. The full marking includes in addition:

Revision history 1N6642U

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
26-Mar-2010	1	First issue.
23-Sep-2011	2	Updated ESCC status in Features and added footnote to Table 3.
8-Nov-2013	3	Updated Table 1, Table 5 and Table 7 and inserted Other information.
04-Dec-2015	4	Updated Table 7 and reformatted to current standard.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID16972 Rev 4 9/9