

MOSFET – Power, Single N-Channel

100 V, 38 m Ω , 21 A

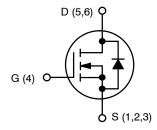
NVMFS040N10MCL

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- NVMFWS040N10MCL Wettable Flanks Product
- These Devices are Pb-Free, Halogen Free/BFR Free, Beryllium Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	100	٧
Gate-to-Source Voltage	€		V _{GS}	±20	٧
Continuous Drain	Steady	T _C = 25°C	I _D	21	Α
Current R _{θJC} (Note 1)		T _C = 100°C		15	
Power Dissipation	State	T _C = 25°C	P_{D}	36	W
R _{θJC} (Note 1)		T _C = 100°C		18	
Continuous Drain		T _A = 25°C	I _D	6.5	Α
Current R _{θJA} (Notes 1, 2)	Steady	T _A = 100°C		4.6	
Power Dissipation	State	T _A = 25°C	P_{D}	3.5	W
R _{θJA} (Notes 1, 2)		T _A = 100°C		1.7	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \mu s$		I _{DM}	94	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			IS	28	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 0.9 A)			E _{AS}	109	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

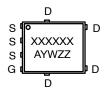
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 1)	$R_{\theta JC}$	4.2	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	43	

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	38 mΩ @ 10 V	21 A
	53 mΩ @ 4.5 V	21 A

N-CHANNEL MOSFET



DFN5 (SO-8FL) CASE 488AA

DFN5 (SO8FL WF) CASE 507BA

MARKING DIAGRAM

A = Assembly Location

Y = Year W = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

^{2.} Surface-mounted on FR4 board using 1 in² pad size, 1 oz. Cu pad.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			70		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 100 V	T _J = 25°C			1	μΑ
			T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
ON CHARACTERISTICS					•	•	•
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 26 μA	1		3	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref to 25°C			-5.9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I	V _{GS} = 10 V, I _D = 5 A		31	38	mΩ
		V _{GS} = 4.5 V, I	_D = 4 A		42	53	1
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 5 A			18		S
CHARGES & CAPACITANCES	•						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			500		pF
Output Capacitance	C _{OSS}				200		
Reverse Transfer Capacitance	C _{RSS}				3.7		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 50 V, I _D = 4 A			4.0		nC
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 5 A			8.3		1
Threshold Gate Charge	Q _{G(TH)}				0.8		1
Gate-to-Source Charge	Q _{GS}				1.6		1
Gate-to-Drain Charge	Q _{GD}				1.2		1
Plateau Voltage	V _{GP}				2.9		V
SWITCHING CHARACTERISTICS (Note 3	3)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 50 V, I_{D} = 5 A, R_{G} = 6 Ω			7.2		ns
Rise Time	t _r				9.3		- - -
Turn-Off Delay Time	t _{d(OFF)}				15.9		
Fall Time	t _f				3.1		
DRAIN-SOURCE DIODE CHARACTERIS	STICS						
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 5 A	T _J = 25°C		0.85	1.2	V
			T _J = 125°C		0.73		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A}/\mu\text{s,}$ $I_{S} = 2 \text{ A}$			23		ns
Reverse Recovery Charge	Q _{RR}				11		nC
Charge Time	t _a				11.2		ns
Discharge Time	t _b				11.4		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

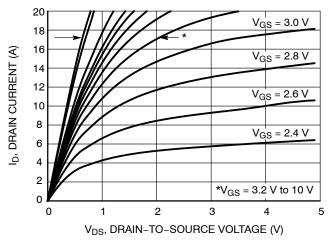


Figure 1. On-Region Characteristics

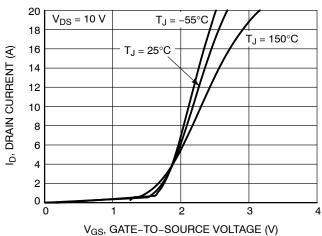


Figure 2. Transfer Characteristics

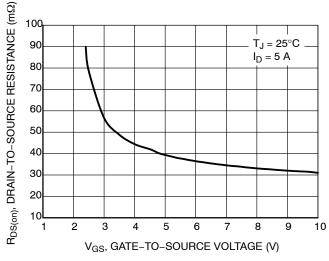


Figure 3. On-Resistance vs. Gate-to-Source Voltage

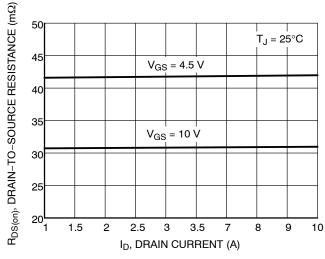


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

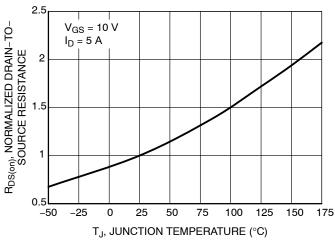


Figure 5. On–Resistance Variation with Temperature

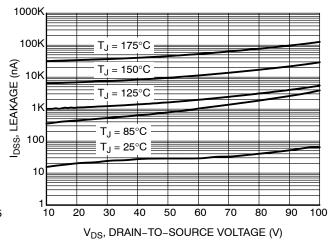


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

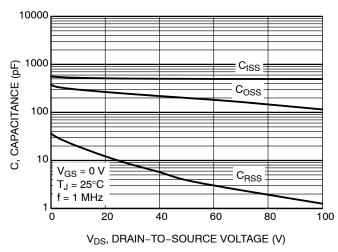


Figure 7. Capacitance Variation

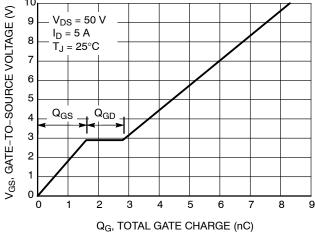


Figure 8. Gate-to-Source Voltage vs. Total Charge

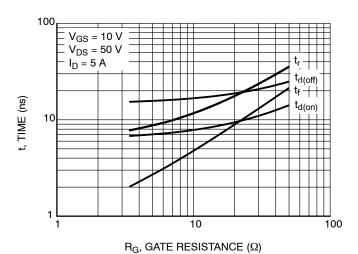


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

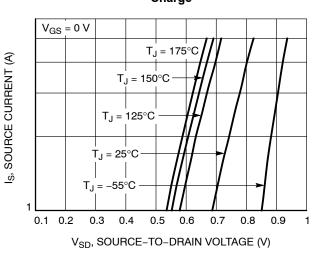


Figure 10. Diode Forward Voltage vs. Current

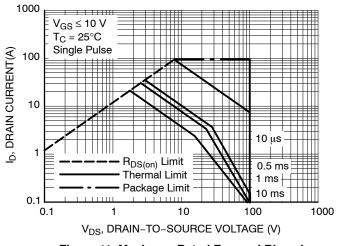


Figure 11. Maximum Rated Forward Biased Safe Operating Area

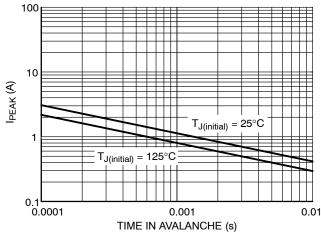


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

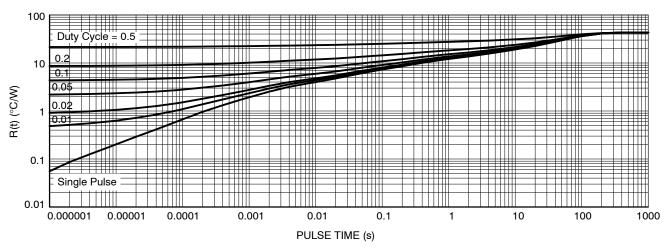


Figure 13. Thermal Characteristics

DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NVMFS040N10MCLT1G	DFN5 (Pb-Free)	1500 / Tape & Reel
NVMFWS040N10MCLT1G	Wettable Flank DFN5 (Pb-Free)	1500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.