
Datasheet

Automotive-grade N-channel 950 V, 0.95 Ω typ., 9 A MDmesh K5 Power MOSFET in a DPAK package

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STD7N95K5AG	950 V	1.25 Ω	9 A	110 W

- AEC-Q101 qualified
- Industry's lowest R_{DS(on)} x area
- · Industry's best FoM (figure of merit)
- · Ultra-low gate charge
- 100% avalanche tested
- · Zener-protected

Applications

· Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Product status link STD7N95K5AG

Product summary ⁽¹⁾				
Order code	STD7N95K5AG			
Marking	7N95K5			
Package	DPAK			
Packing	Tape and reel			

 The HTRB test was performed at 80% V_{(BR)DSS} in compliance with AEC-Q101 rev. C. All the other tests were performed according to rev. D.

page 2/15

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate- source voltage	±30	V
I _D	Drain current (continuous) at T _C = 25 °C	9	Α
I _D	Drain current (continuous) at T _C = 100 °C	6	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	13	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	110	W
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _J max.)	3	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	90	mJ
dv/dt (2)	Peak diode recovery voltage slope	4.5	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range Storage temperature range		°C
T _{stg}			C

- 1. Pulse width limited by safe operating area.
- 2. $I_{SD} \le 9 \text{ A, di/dt} \le 100 \text{ A/}\mu\text{s, } V_{DS(peak)} \le V_{(BR)DSS}$.
- 3. $V_{DS} \le 760 \text{ V}.$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	1.15	°C/W
R _{thJB} (1)	Thermal resistance, junction-to-board	50	°C/W

1. When mounted on 1 inch² FR-4 board, 2 oz Cu.

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	950			V
		V _{GS} = 0 V, V _{DS} = 950 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 950 \text{ V},$ $Tc = 125 ^{\circ}C^{(1)}$			50	μΑ
I _{GSS}	Gate body leakage current	V _{DS} = 0, V _{GS} = ±20 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	V _{DS} = V _{GS} , I _D = 100 μA	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 3 A		0.95	1.25	Ω

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz	-	430	-	pF
C _{oss}	Output capacitance	VGS - 0 V, VDS - 100 V, 1 - 1 WHZ	-	36	-	pF
C _{o(tr)} (1)	Equivalent capacitance time related	V _{GS} = 0 V, V _{DS} = 0 to 760 V	-	52	-	pF
C _{o(er)} (2)	Equivalent capacitance energy related		-	19	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	7	-	Ω
Qg	Total gate charge	V _{DD} = 760 V, I _D = 6 A, V _{GS} = 0 to 10 V, (see Figure 15. Test circuit for gate charge behavior)	-	9.6	-	nC
Q _{gs}	Gate-source charge		-	3.2	-	nC
Q _{gd}	Gate-drain charge		-	4.4	-	nC

^{1.} $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 5. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 475 V, I_{D} = 3 A, R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 14. Test circuit for resistive load switching times and Figure 19. Switching time waveform)	-	13	-	ns
t _r	Rise time		-	11	-	ns
t _{d(off)}	Turn-off delay time		-	30	-	ns
t _f	Fall time		-	18	-	ns

DS13720 - Rev 1 page 3/15

^{2.} $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 6. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		9	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		13	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 6 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 6 A, V _{DD} = 60 V	-	420		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/μs,	-	4.8		μC
I _{RRM}	Reverse recovery current	(see Figure 16. Test circuit for inductive load switching and diode recovery times)	-	17		Α
t _{rr}	Reverse recovery time	I _{SD} = 6 A,V _{DD} = 60 V	-	620		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/μs, Tj = 150 °C	-	6.7		μC
I _{RRM}	Reverse recovery current	(see Figure 16. Test circuit for inductive load switching and diode recovery times)	-	14.5		Α

- 1. Pulse width limited by safe operating area.
- 2. Pulsed: pulse duration = 300µs, duty cycle 1.5%

Table 7. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I _{GS} = ±1 mA, I _D = 0 A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

DS13720 - Rev 1 page 4/15

2.1 Electrical characteristics (curves)

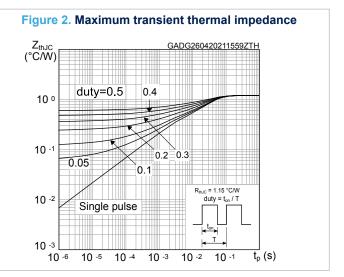


Figure 3. Typical output characteristics

GADG260420211602TCH

12

10

8

V_{DS} =20V

6

4

2

0

5

6

7

8

9

10

V_{GS} (V)

Figure 4. Typical transfer characteristics

Figure 5. Typical gate charge characteristics

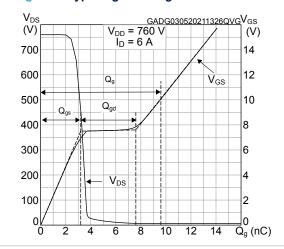
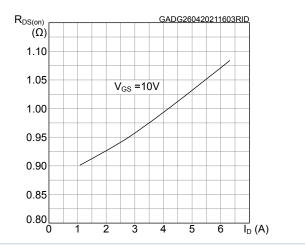



Figure 6. Typical drain-source on-resistance

DS13720 - Rev 1 page 5/15

Figure 7. Typical capacitance characteristics

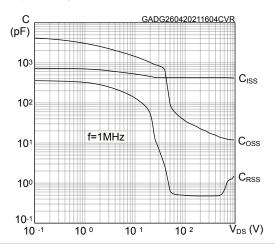


Figure 8. Typical output capacitance stored energy

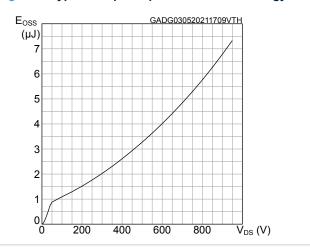


Figure 9. Normalized gate threshold vs temperature

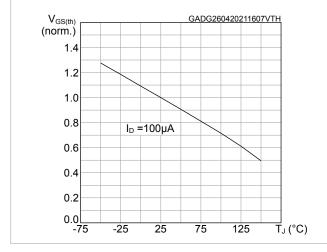


Figure 10. Normalized on-resistance vs temperature

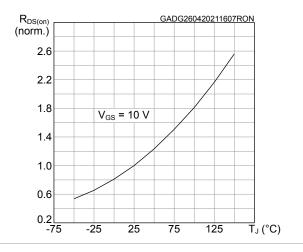


Figure 11. Typical reverse diode forward characteristics

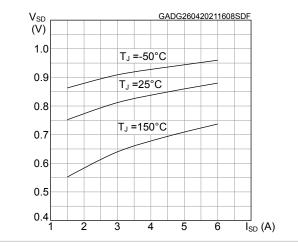
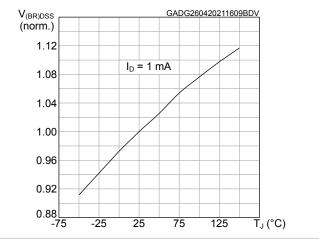
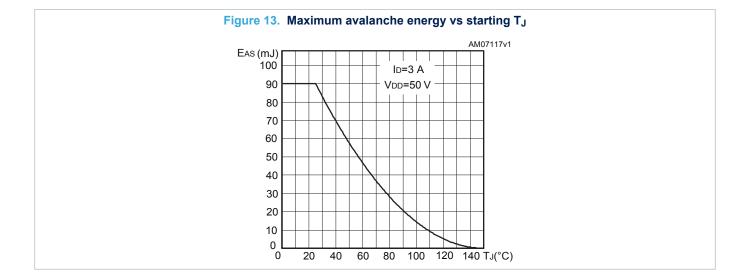




Figure 12. Normalized breakdown voltage vs temperature

DS13720 - Rev 1 page 6/15

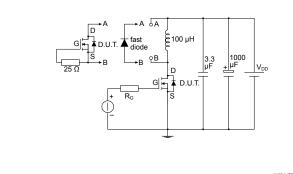

3 Test circuits

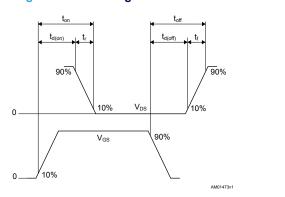
Figure 14. Test circuit for resistive load switching times

Figure 15. Test circuit for gate charge behavior RL V_{GS} V_{US} V_{US} V

Figure 16. Test circuit for inductive load switching and diode recovery times

AM01468v1

V₀ 2200 3.3 V₀0 1.5 V

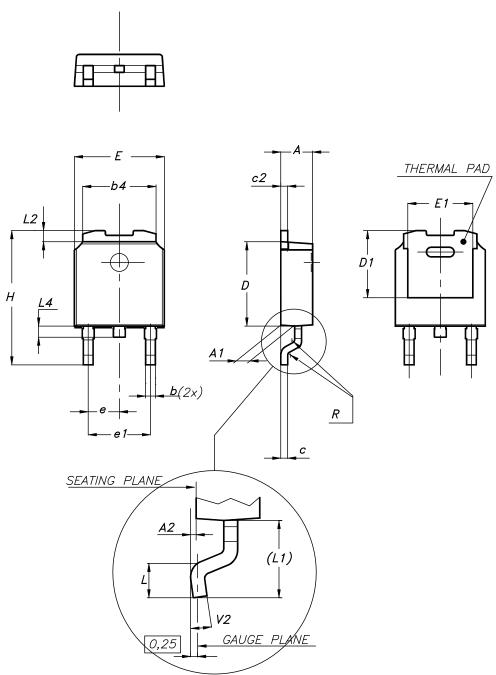

Figure 17. Unclamped inductive load test circuit

AM01471v1

Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

DS13720 - Rev 1 page 8/15



4 Package information

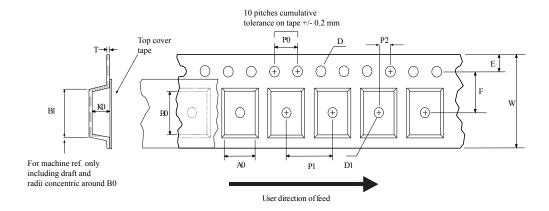
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

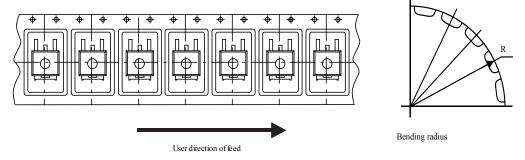
4.1 DPAK (TO-252) type A2 package information

Figure 20. DPAK (TO-252) type A2 package outline

0068772_type-A2_rev30

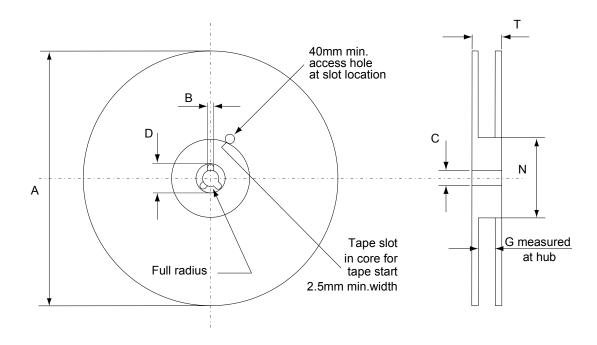
Table 8. DPAK (TO-252) type A2 mechanical data


Dim.	mm					
Dim.	Min.	Тур.	Max.			
Α	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1	4.95	5.10	5.25			
E	6.40		6.60			
E1	5.10	5.20	5.30			
е	2.159	2.286	2.413			
e1	4.445	4.572	4.699			
Н	9.35		10.10			
L	1.00		1.50			
L1	2.60	2.80	3.00			
L2	0.65	0.80	0.95			
L4	0.60		1.00			
R		0.20				
V2	0°		8°			


DS13720 - Rev 1 page 10/15

4.2 DPAK (TO-252) packing information

Figure 21. DPAK (TO-252) tape outline



AM08852v1

DS13720 - Rev 1 page 11/15

Figure 22. DPAK (TO-252) reel outline

AM06038v1

Table 9. DPAK (TO-252) tape and reel mechanical data

Таре			Reel			
Dim.	n	mm	Dim.	mm		
Dim.	Min.	Max.		Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1	Base	qty.	2500	
P1	7.9	8.1	Bulk	qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

DS13720 - Rev 1 page 12/15

Revision history

Table 10. Document revision history

Date	Revision	Changes
05-May-2021	1	First release.

DS13720 - Rev 1 page 13/15

Contents

1	Elec	trical ratings	2
2	Electrical characteristics		3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	8
4	Package information		9
	4.1	DPAK (TO-252) type A2 package information	9
	4.2	DPAK (TO-252) packing information.	11
Rev	Revision history		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13720 - Rev 1 page 15/15