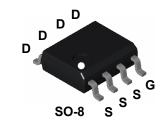
August 2008

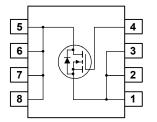
FDS7788 30V N-Channel PowerTrench^o MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for "low side" synchronous rectifier operation, providing an extremely low $R_{DS(ON)}$ in a small package.

Applications


- DC/DC converter
- · Load switch
- Motor drives



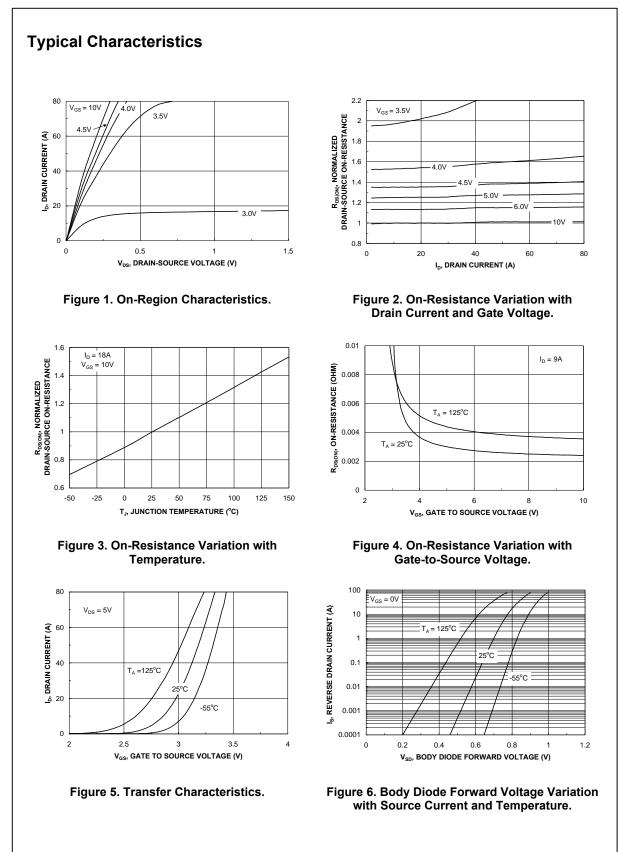
Features

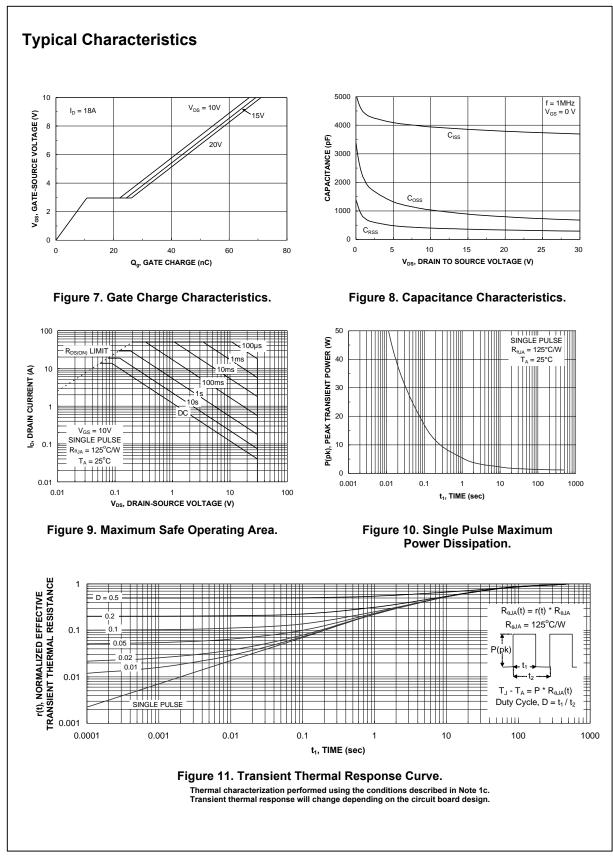
• 18 A, 30 V. $R_{DS(ON)} = 4.0 \ m\Omega \ @ V_{GS} = 10 \ V$ $R_{DS(ON)} = 5.0 \ m\Omega \ @ V_{GS} = 4.5 \ V$

- Low gate charge
- · Fast switching speed
- High power and current handling capability
- High performance trench technology for extremely low R_{DS(ON)}
- RoHS Compliant

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol		Parameter		Ratings	Units
V _{DSS}	Drain-Source	urce Voltage		30	V
V _{GSS}	Gate-Source	Voltage		±20	V
D	Drain Currer	t – Continuous	(Note 1a)	18	A
		– Pulsed		50	
AS	Drain-Source	e Avalanche Energy	(Note 3)	661	mJ
PD	Power Dissipation for Single Operation		ON (Note 1a)	2.5	W
			(Note 1b)	1.2	
			(Note 1c)	1.0	
Γ _J , T _{STG}	Operating ar	Operating and Storage Junction Temperature Range		-55 to +150	°C
Therma	I Charact	eristics			
R _{eJA}	Thermal Res	istance, Junction-to-Aml	bient (Note 1a)	50	°C/W
ર ₀JC	Thermal Res	ermal Resistance, Junction-to-Case		30	°C/W
Packag	e Marking	and Ordering	Information		
Device	Marking	Device	Reel Size	Tape width	Quantity
FDS7788		FDS7788	13"	12mm	2500 units


©2008 Fairchild Semiconductor Corporation


FDS7788 Rev F1 (W)

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 250 \mu A$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$			10	μΑ
I _{GSSF}	Gate-Body Leakage, Forward	ate-Body Leakage, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1	1.9	3	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-5.4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			3.0 3.8 4.3	4.0 5.0 6.3	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	30			А
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 18 \text{ A}$		112		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	pacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		3845		pF
Coss	Output Capacitance	f = 1.0 MHz		930		pF
C _{rss}	Reverse Transfer Capacitance	1		368		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.4		Ω
Switchin	g Characteristics (Note 2)		•			
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 V$, $I_D = 1 A$,		15	27	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		13	23	ns
t _{d(off)}	Turn–Off Delay Time			62	99	ns
t _f	Turn–Off Fall Time	1		36	58	ns
Q _g	Total Gate Charge			37	48	nC
Q _{gs}	Gate-Source Charge			10		nC
Q _{gd}	Gate–Drain Charge			14		nC
Drain-Sc	ource Diode Characteristics	and Maximum Ratings				
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.1 \text{ A} (\text{Note 2})$		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 18 A,		39		nS
Q _{rr}	Diode Reverse Recovery Charge	d _{iF} /d _t = 100 A/µs		33		nC

3. Starting T_J = 25°C, L = 3mH, I_{AS} = 21A, V_{DD} = 30V, V_{GS} = 10V

FDS7788 Rev F1 (W)

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLTTM CTL TM CUrrent Transfer Logic TM EcoSPARK® EfficentMax TM EZSWITCHTM $*$ TM Fairchild Semiconductor® FACT Quiet Series TM FACT® FAST® FastvCore TM FlashWriter® $*$	FPS™ F-PFS™ FRFET® Global Power Resource SM Green FPS™ Groen FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MicroPak™ Midron-SPM™ OPTOLOGIC® OPTOPLANAR®	PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SMART START™ SMP® STEALTH™ SuperSOT™-3 SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SuperMOS™ SyncFET™ SyncFET™	The Power Franchise® the Franchise TinyBoost™ TinyBouck™ TinyCogic® TINYOPTO™ TinyPOwer™ TinyPOwer™ TinyPWM™ TinyWire™ WEEDES" Utra FRFET™ UniFET™ VCX™ VisualMax™
---	---	---	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev