

Datasheet

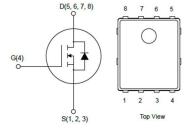
N-Channel Enhancement Mode Logic Level 40V, 0.8mΩ max, 360A STripFET F8 Power MOSFET in a PowerFLAT 5x6 package

Pre-Release Data

Features

MSL1 grade

- 175°C operative temperature
- 100% avalanche tested


Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET F8 with an enhanced trench gate structure that results in very low on-state resistance, while also reducing internal capacitances and gate charge for faster and more efficient switching.

Product summary				
Order code	STL320N4LF8			
Marking (1)	320N4LF8			
Package	PowerFLAT 5x6			
Packing	Tape and reel			

Electrical ratings

1 Electrical ratings

(T_c = 25°C unless otherwise specified)

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V_{GS}	Gate-source voltage	±20	V
I _D ⁽²⁾	Drain current (continuous) at $T_c = 25^{\circ}C$	360	А
ID (/	Drain current (continuous) at $T_c = 100^{\circ}C$	254	A
I _{DM} ^(3,4)	Drain current (pulsed), $t_P = 10 \mu s$	1440	А
P _{TOT}	Total power dissipation at $T_c = 25^{\circ}C$	188	W
AS	Single pulse avalanche current (pulse width limited by T _J max)	60	А
E _{AS}	Single pulse avalanche energy (starting $T_{\rm J}$ = 25°C, $I_{\rm D}$ = 60A, $R_{\rm Gmin}$ = 25Ω)	590	mJ
TJ	Operating junction temperature range	55 to 175	°C
T _{stg}	-55 to 175 T _{stg} Storage temperature range		

Table 1. Absolute maximum ratings

Table 2. Thermal data (3)

Symbol	Parameter	Value	Unit
$R_{thJA}^{(5)}$	Thermal resistance junction-ambient max. (on 2s2p FR-4 board vertical in still air)	20	°C/W
R _{thJC}	R _{thJC} Thermal resistance junction-case max.		°C/W

ev. 0.1

2 Electrical characteristics

 $(T_J = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0V, I_D = 1mA$	40			V
		$V_{\text{DS}} = 40V, V_{\text{GS}} = 0V$			1	
I _{DSS}	Zero gate voltage drain current				100	μA
I _{GSS}	Gate-body leakage current	$V_{\text{GS}}=20V,V_{\text{DS}}=0V$			100	nA
$V_{\text{GS(th)}}$	Gate threshold voltage	$V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = 250 \mu A$	1.2		2.0	V
P	Static drain-source	$V_{GS} = 10V, I_D = 60A$		0.55	0.8	mΩ
R _{DS(on)}	on-resistance	$V_{GS}=4.5V,\ I_{D}=60A$		0.85	1.15	111[2]
R _G ⁽³⁾	Gate resistance			1.2		Ω

Table 3. On/off states

Table 4. Dynamic ⁽³⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance			7657		pF
C _{oss}	Output capacitance	$V_{\text{DS}}=25V,f=1MHz,V_{\text{GS}}=0V$		1968		pF
C _{rss}	Reverse transfer capacitance	-		50		pF
0	Total gata charge	$V_{DD} = 20V, I_D = 60A, V_{GS} = 0 \text{ to } 4.5V$		41		0
Q _g	Total gate charge	$V_{DD} = 20V, I_D = 60A, V_{GS} = 0 \text{ to } 10V$		96		nC
Q_{gs}	Gate-source charge	$V_{DD} = 20V, I_D = 60A, V_{GS} = 0 \text{ to } 4.5V$		20		nC
Q_{gd}	Gate-drain charge			6.9		nC
Q _{g(sync)}	Total gate charge, sync. MOSFET	$V_{DS} = 0.1V, V_{GS} = 0 \text{ to } 4.5V$		43		nC
Q _{oss}	Output charge	$V_{\text{DD}} = 20V, V_{\text{GS}} = 0V$		102		nC

Electrical characteristics

Table 5. Switching times ⁽³⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$\label{eq:V_DD} \begin{split} V_{\text{DD}} &= 20 V, \ I_{\text{D}} = 60 \text{A}, \ R_{\text{G}} = 4.7 \Omega, \\ V_{\text{GS}} &= 10 V \end{split}$		12.3		ns
tr	Rise time			6.3		ns
t _{d(off)}	Turn-off delay time			89.2		ns
t _f	Fall time			21		ns

Table 6. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
_{SD} ^(2,3)	Forward on current (continuous)	T _c = 25°C			135	А
V_{SD}	Forward on voltage	$I_{SD}=60A,V_{GS}=0V$			1.1	V
t _{rr} ⁽³⁾	Reverse recovery time	I _D = 60A, di/dt = 100A/µs, V _{DD} = 32V		60.1		ns
Q _{rr} ⁽³⁾	Reverse recovery charge			74.4		nC
I _{RRM} ⁽³⁾	Reverse recovery current			2.5		А

Pre-Release Data

(1)

For engineering samples marking, see *PowerFLAT 5x6 package marking information*. The value is relevant to R_{thuC}. Current limitations will come from the operative conditions, such as temperature and thermal resistance of (2) the PCB.

Specified by design and evaluated by characterization, not tested in production. Pulse width is limited by safe operating area. Defined according to JEDEC standards (JESD51-5, -7). (3)

(4)

(5)

Electrical characteristics (curves)

2.1 Electrical characteristics (curves)

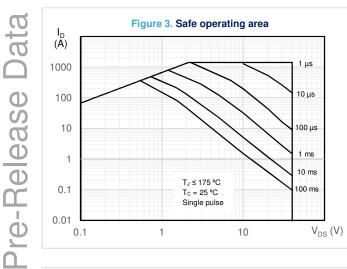


Figure 4. Normalized transient thermal impedance

100

150

 T_C (°C)

Figure 2. Drain current

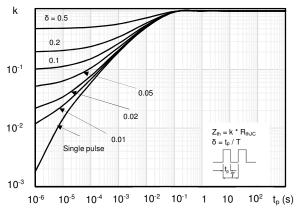
Silicon limited

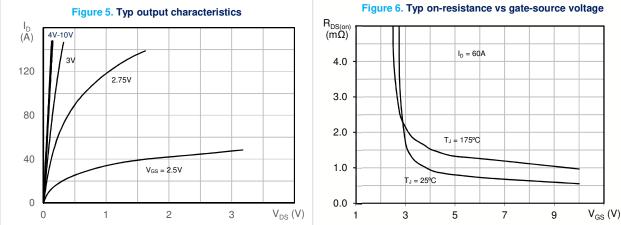
I_D (A)

350

300 250

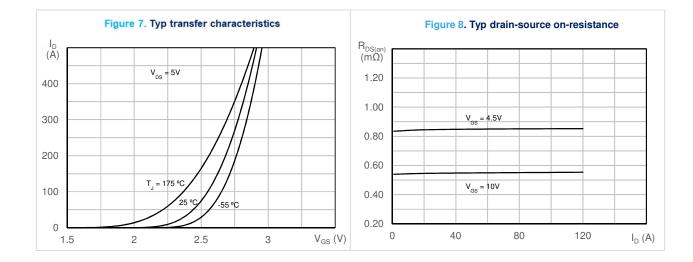
200

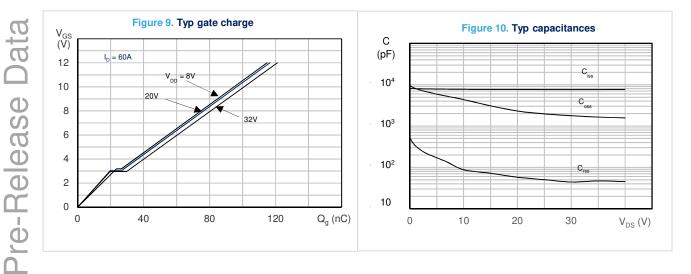

150 100

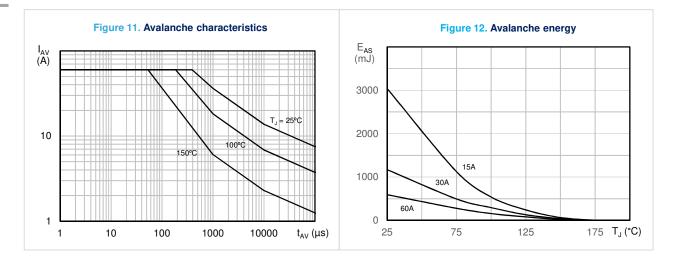

50

0

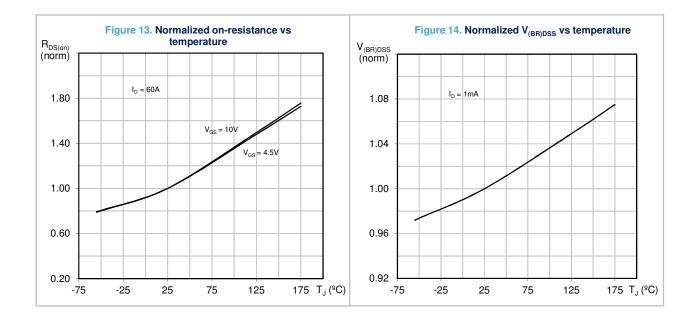
0

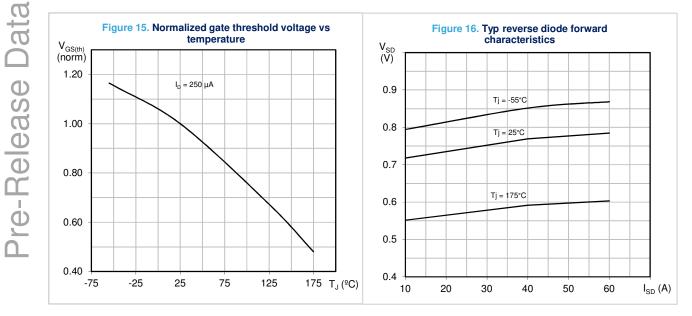

50



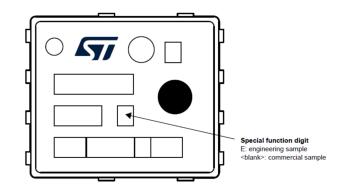


Electrical characteristics (curves)




pag. 6 / 9

Electrical characteristics (curves)


Rev. 0.1

PowerFLAT 5x6 package marking information

3 PowerFLAT 5x6 package marking information

Figure 17. PowerFLAT 5x6 package marking information

Pre-Release Data

Notes:

Engineering Samples are clearly identified with a dedicated special symbol in the marking of each unit. These samples are intented to be used for electrical compatibility evaluation only. Usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples are fully qualified parts from ST standard production with no usage restrictions.

pag. 8 / 9

Revision History

Table 7. Document revision history

Date	Revision	Changes
3-Mar-2022	0.1	Pre-release data

Rev. 0.1

pag. 9 / 9