

Datasheet

N-channel 600 V, 0.310 Ω typ., 11 A MDmesh™ DM2 Power MOSFET in a DPAK package

Order codes		V _{DS}	R _{DS(on)} max.	۱ _D			
	STD13N60DM2	600 V	0.365 Ω	11 A			
•	Fast-recovery body diode						
•	Extremely low ga	ate charge and input o	capacitance				
•	Low on-resistand	ce					
•	100% avalanche tested						
•	Extremely high dv/dt ruggedness						
	Zener-protected						

Zener-protected

Applications

Switching applications •

Description

This high-voltage N-channel Power MOSFET is part of the MDmesh™ DM2 fastrecovery diode series. It offers very low recovery charge (Qrr) and time (trr) combined with low R_{DS(on)}, rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Product status links STD13N60DM2

Product summary				
Order code	STD13N60DM2			
Marking	13N60DM2			
Package	DPAK			
Packing	Tape and reel			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _{case} = 25 °C	11	
Ι _D	Drain current (continuous) at T _{case} = 100 °C	7	- A
I _{DM} ⁽¹⁾	Drain current (pulsed)	44	А
P _{TOT}	Total power dissipation at T _{case} = 25 °C	110	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	40	V/ns
dv/dt ⁽³⁾	dv/dt ⁽³⁾ MOSFET dv/dt ruggedness		v/ns
T _{stg}	T _{stg} Storage temperature range		°C
Tj	Operating junction temperature range	-55 to 150	

1. Pulse width limited by safe operating area.

2. $I_{SD} \leq 11 \text{ A}$, $di/dt \leq 900 \text{ A}/\mu s$; $V_{DS peak} < V_{(BR)DSS}$, V_{DD} =400 V.

3. $V_{DS} \le 480 V$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.14	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	C/VV

1. When mounted on FR-4 board of inch², 2oz Cu.

Table 3. Avalanche characteristics

Symbol	Symbol Parameter		Unit
I _{AR}	Avalanche current, repetitive or not repetitive (Pulse width limited by $T_{jmax})$	2.5	А
E _{AS}	Single pulse avalanche energy		mJ

2 Electrical characteristics

57

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
		V _{GS} = 0 V, V _{DS} = 600 V			1.5	μA
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V,			100	
		$T_{case} = 125 \ ^{\circ}C \ ^{(1)}$			100	
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 5.5 A		0.310	0.365	Ω

Table 4. Static

1. Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	730	-	
C _{oss}	Output capacitance	V_{DS} = 100 V, f = 1 MHz, V_{GS} = 0 V		38	-	pF
C _{rss}	Reverse transfer capacitance	-	-	0.9	-	
C _{oss eq.} (1)	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	70	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	5.1	-	Ω
Qg	Q_{g} Total gate charge	V _{DD} = 480 V, I _D = 11 A, V _{GS} = 0 to 10 V	-	19	-	
Q _{gs}	Gate-source charge	(see Figure 14. Test circuit for gate	-	4.4	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	9.9	-	

1. $C_{oss eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

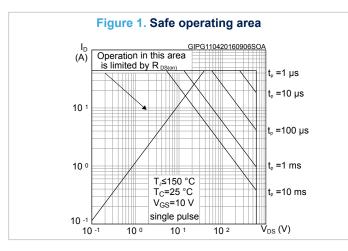
Table 6. Switching times

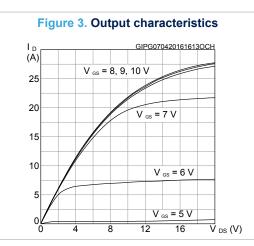
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V 000V/L 55A D 470	-	12.3	-	
t _r	Rise time	V_{DD} = 300 V, I_D = 5.5 A, R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 13. Test circuit	-	4.8	-	ns
t _{d(off)}	Turn-off delay time	for resistive load switching times and Figure 18. Switching time waveform)	-	42.5	-	115
t _f	Fall time		-	10.6	-	

Table	7.	Source-drai	n diode
		oouloo ulu	in alouo

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		11	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	А
V _{SD} ⁽²⁾	Forward on voltage	age $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 11 \text{ A}$			1.6	V
t _{rr}	Reverse recovery time	I_{SD} = 11 A, di/dt = 100 A/µs, V_{DD} = 60 V (see Figure 15. Test circuit for inductive	-	90		ns
Q _{rr}	Reverse recovery charge		-	252		nC
I _{RRM}	Reverse recovery current	load switching and diode recovery times)	-	5.6		А
t _{rr}	Reverse recovery time	I_{SD} = 11 A, di/dt = 100 A/µs, V _{DD} = 60 V, T _j = 150 °C (see Figure 15. Test circuit for inductive load switching and diode	-	170		ns
Q _{rr}	Reverse recovery charge		-	667		nC
I _{RRM}		-	8.6		А	

1. Pulse width is limited by safe operating area.


2. Pulse test: pulse duration = $300 \ \mu$ s, duty cycle 1.5%.


Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 250 \ \mu A, \ I_D = 0 \ A$	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

2.1 Electrical characteristics (curves)

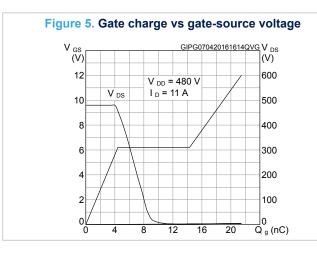
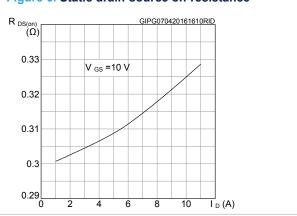



Figure 6. Static drain-source on-resistance

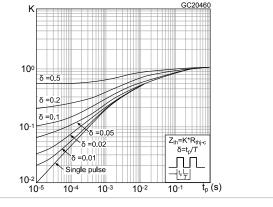
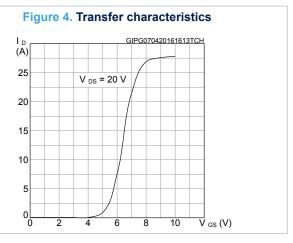
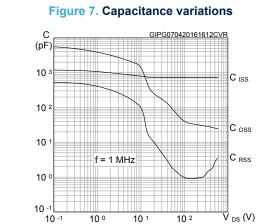
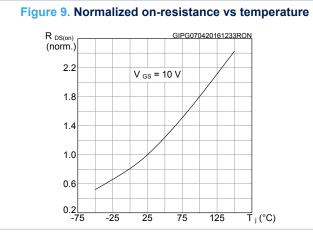





Figure 2. Thermal impedance

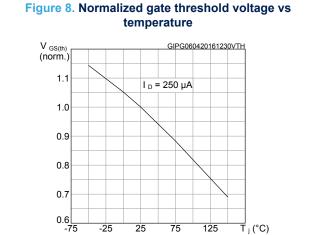
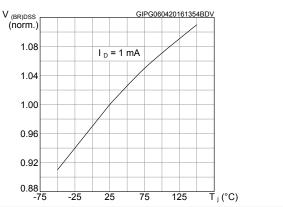
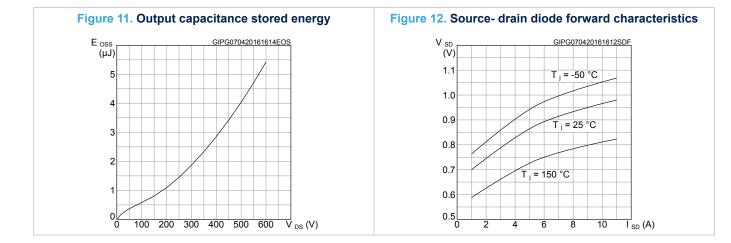
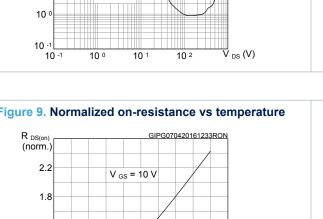
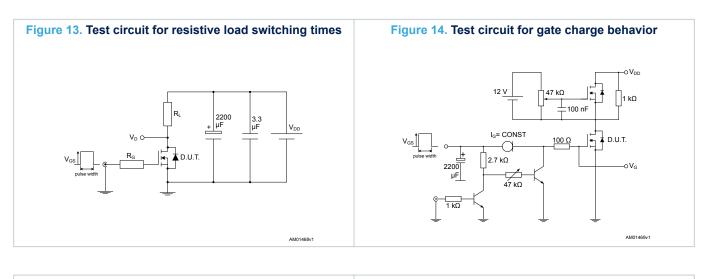
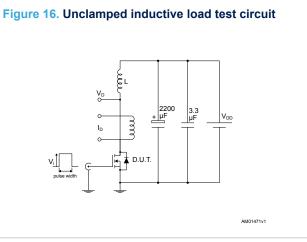
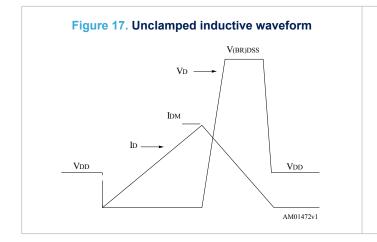
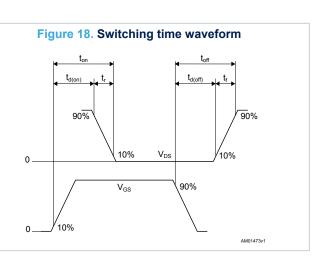





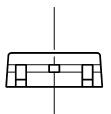
Figure 10. Normalized $V_{(BR)DSS}$ vs temperature

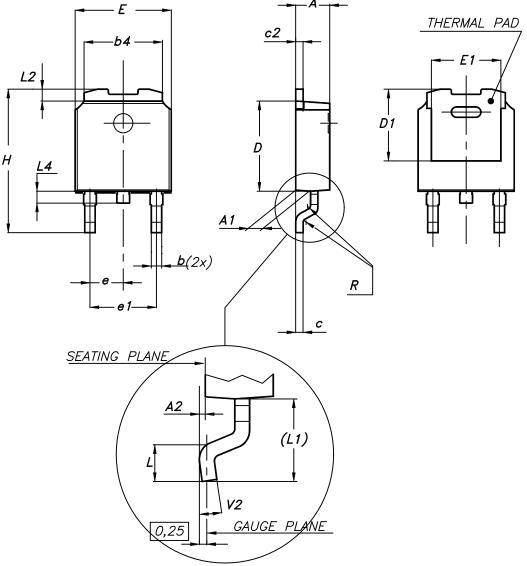







3 Test circuits

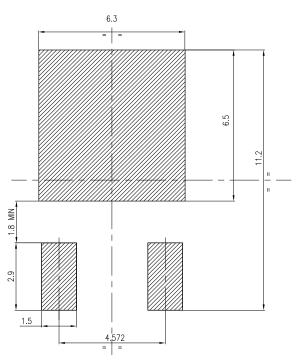

4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 DPAK (TO-252) type A2 package information

57

Figure 19. DPAK (TO-252) type A2 package outline



0068772_type-A2_rev25

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	5.10	5.20	5.30
е	2.159	2.286	2.413
e1	4.445	4.572	4.699
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

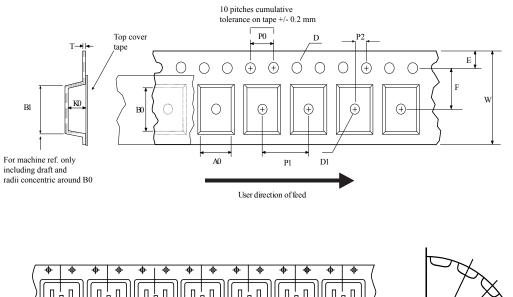
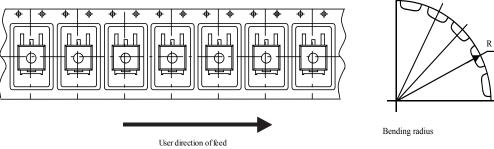
Table 9. DPAK (TO-252) type A2 mechanical data

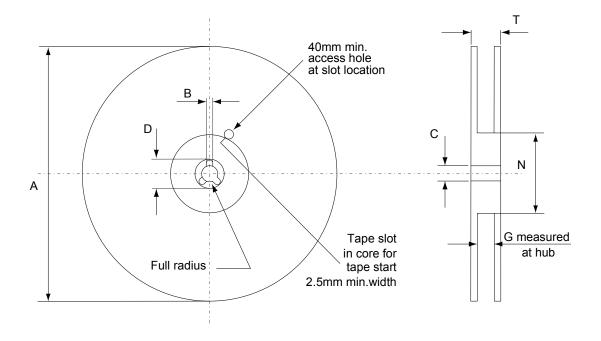
Figure 20. DPAK (TO-252) recommended footprint (dimensions are in mm)

FP_0068772_25

4.2 DPAK (TO-252) packing information

57


Figure 21. DPAK (TO-252) tape outline

AM08852v1

AM06038v1

Таре			Reel		
Dim.	mm		Dire	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	A		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty.		2500
P1	7.9	8.1	Bulk qty.		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Table 10. DPAK (TO-252) tape and reel mechanical data

Revision history

Table 11. Document revision history

Date	Revision	Changes
11-Apr-2016	1	First release.
07-Dec-2016	2	Document status promoted from preliminary to production data.
29-Nov-2018	3	Modified Figure 1. Safe operating area. Minor text changes.

Contents

1	Elect	rical ratings	2		
2	Electrical characteristics				
	2.1	Electrical characteristics (curves)	5		
3	Test	circuits	7		
4	4 Package information				
	4.1	DPAK (TO-252) type A2 package information	8		
	4.2	DPAK (TO-252) packing information.	. 11		
Rev	ision I	nistory	.14		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved