ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

MOSFET – Power, N-Channel, SUPERFET[®] III, FRFET[®] 650 V, 30 A, 110 mΩ

NVHL110N65S3F

Description

SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate.

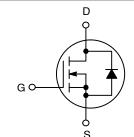
Consequently, SUPERFET III MOSFET is very suitable for the various power system for miniaturization and higher efficiency.

SUPERFET III FRFET MOSFET's optimized reverse recovery performance of body diode can remove additional component and improve system reliability.

Features

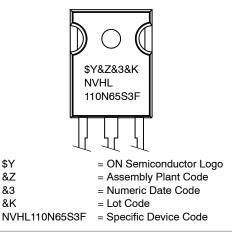
- 700 V @ T_J = 150°C
- Typ. $R_{DS(on)} = 93 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 58 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 553 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable

Applications


- Automotive On Board Charger HEV-EV
- Automotive DC/DC converter for HEV-EV

ON Semiconductor®

www.onsemi.com


V _{DSS}	R _{DS(on)} MAX	I _D MAX	
650 V	110 m Ω @ 10 V	30 A	

N-Channel MOSFET

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Par	Value	Unit	
V _{DSS}	Drain to Source Voltage		650	V
V _{GSS}	Gate to Source Voltage	DC	±30	V
		AC (f > 1 Hz)	±30	V
ID	Drain Current	Continuous (T _C = 25°C)	30	A
		Continuous (T _C = 100°C)	19.5	
I _{DM}	Drain Current	Pulsed (Note 1)	69	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		380	mJ
E _{AR}	Repetitive Avalanche Energy (Note 1)		2.4	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		50	
P _D	Power Dissipation	(T _C = 25°C)	240	W
		Derate Above 25°C	1.92	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 s		300	°C

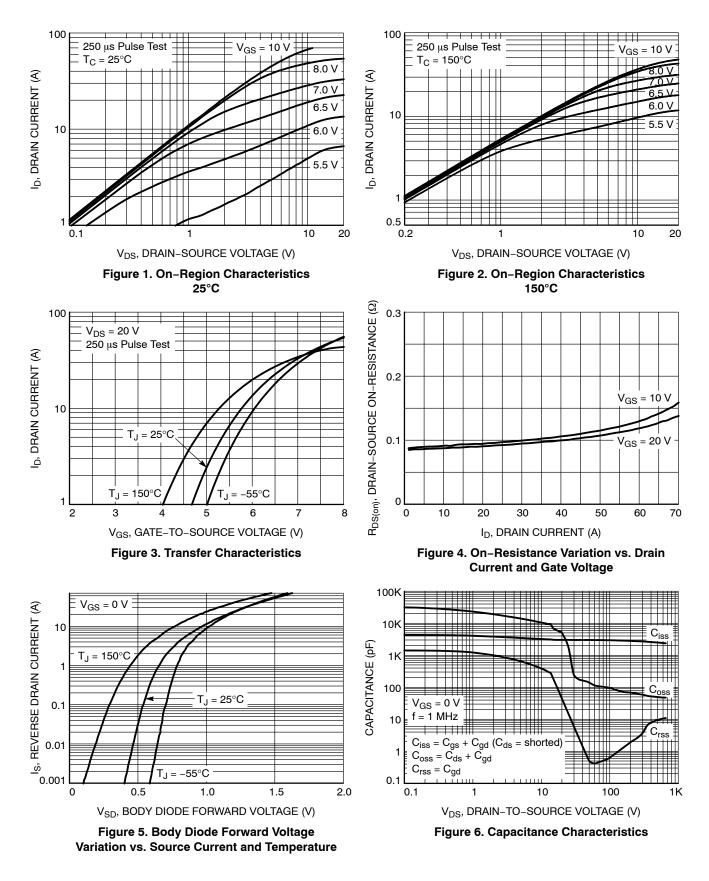
ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise specified)

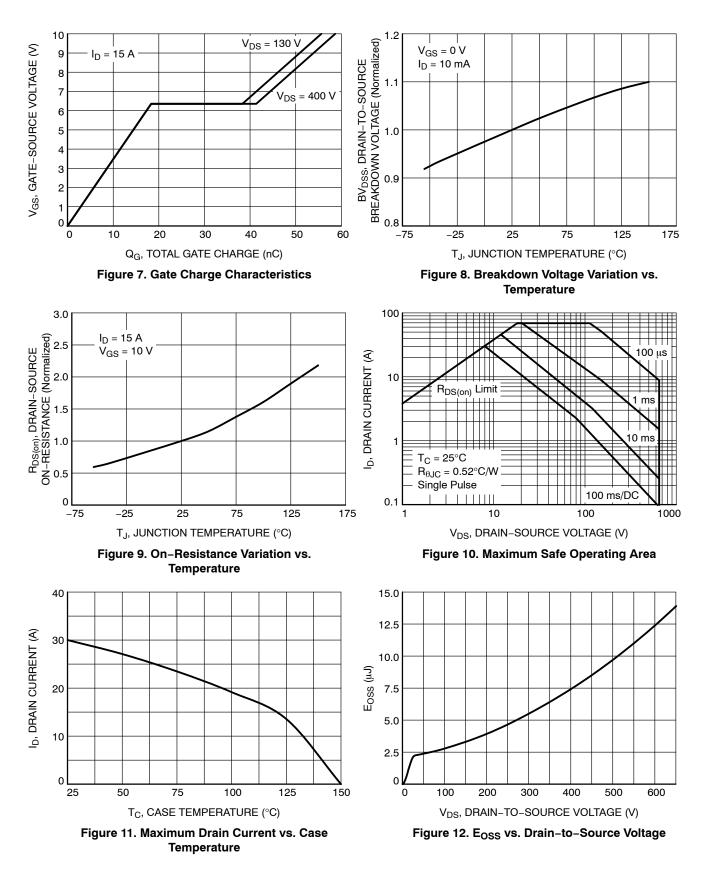
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2. $I_{AS} = 3.5 \text{ A}$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$. 3. $I_{SD} \le 15 \text{ A}$, di/dt $\le 200 \text{ A/}\mu$ s, $V_{DD} \le 400 \text{ V}$, starting $T_J = 25^{\circ}C$.

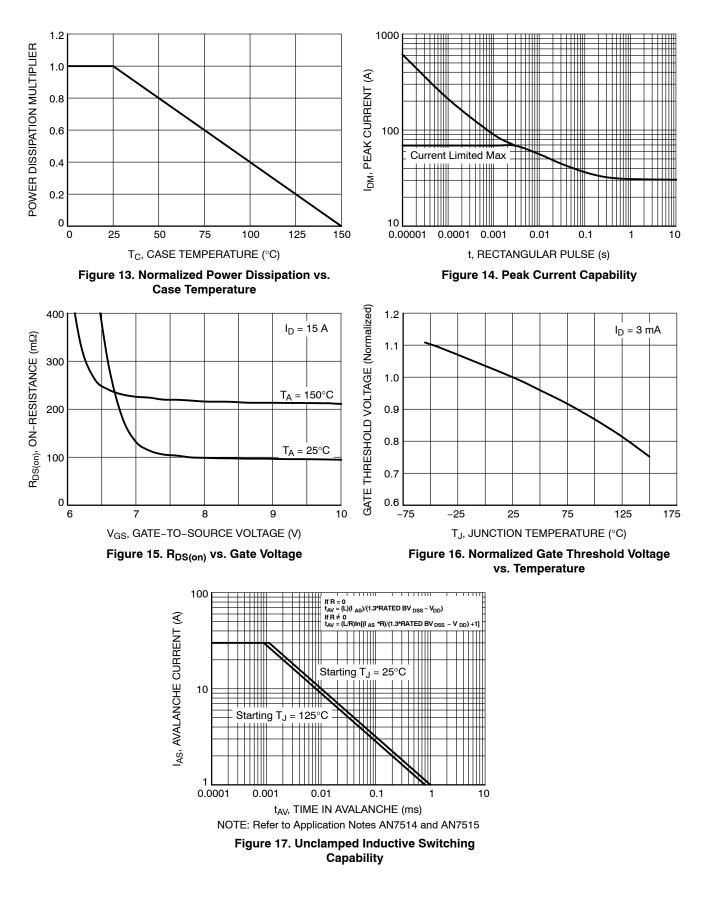
THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.52	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient, Max.	40	

PACKAGE MARKING AND ORDERING INFORMATION


Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NVHL110N65S3F	NVHL110N65S3F	TO-247	Tube	N/A	N/A	30 Units


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARACT	ERISTICS	•				•
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ mA}, \text{ T}_{J} = 25^{\circ}\text{C}$	650	-	-	V
		V_{GS} = 0 V, I_{D} = 10 mA, T_{J} = 150°C	700	-	-	V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 20$ mA, Referenced to $25^{\circ}C$	-	0.61	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	10	μΑ
		$V_{DS} = 520 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$	-	44	-	
I _{GSS}	Gate to Body Leakage Current	V_{GS} = ±30 V, V_{DS} = 0 V	-	-	±100	nA
N CHARACTE	RISTICS	·				
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.74 \text{ mA}$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 15 A	-	93	110	mΩ
9 FS	Forward Transconductance	V _{DS} = 20 V, I _D = 15 A	-	17	-	S
YNAMIC CHA	RACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz	-	2560	-	pF
C _{oss}	Output Capacitance		-	50	-	pF
C _{oss(eff.)}	Effective Output Capacitance	$V_{DS} = 0 \text{ V}$ to 400 V, $V_{GS} = 0 \text{ V}$	-	553	-	pF
C _{oss(er.)}	Energy Related Output Capacitance	$V_{DS} = 0 \text{ V}$ to 400 V, $V_{GS} = 0 \text{ V}$	-	83	-	pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 15 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$	-	58	-	nC
Q _{gs}	Gate to Source Gate Charge	(Note 4)	-	19	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	23	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	2	-	Ω
WITCHING CH	IARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 15 \text{ A},$	-	29	-	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ (Note 4)	-	32	-	ns
t _{d(off)}	Turn-Off Delay Time		-	61	-	ns
t _f	Turn-Off Fall Time	1	-	16	-	ns
OURCE-DRAI	N DIODE CHARACTERISTICS		-	•	•	•
۱ _S	Maximum Continuous Source to Drain	Diode Forward Current	-	-	30	A
I _{SM}	Maximum Pulsed Source to Drain Diod	e Forward Current	-	-	69	Α

IS	Maximum Continuous Source to Drain Diode Forward Current		-	-	30	A
I _{SM}	Maximum Pulsed Source to Drain Diode Forward Current		-	-	69	А
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 15 A		-	1.3	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{SD} = 15 A,$	-	94	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/µs	Ι	343	Ι	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

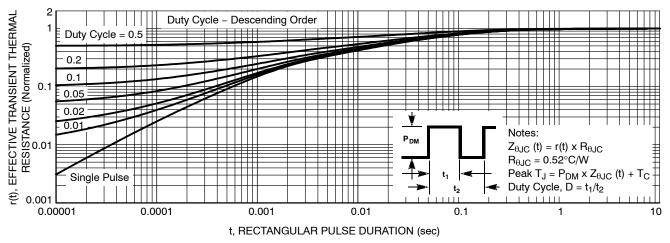


Figure 18. Transient Thermal Response

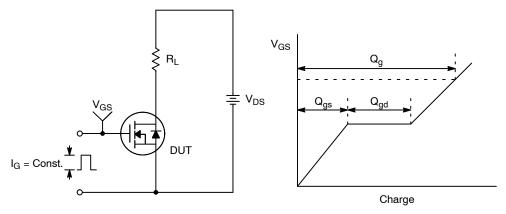


Figure 19. Gate Charge Test Circuit & Waveform

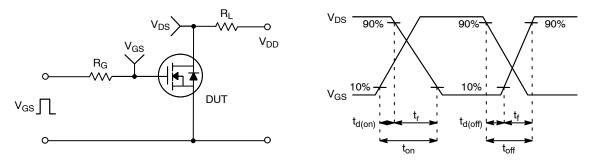


Figure 20. Resistive Switching Test Circuit & Waveforms

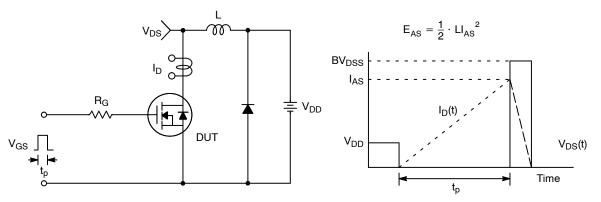


Figure 21. Unclamped Inductive Switching Test Circuit & Waveforms

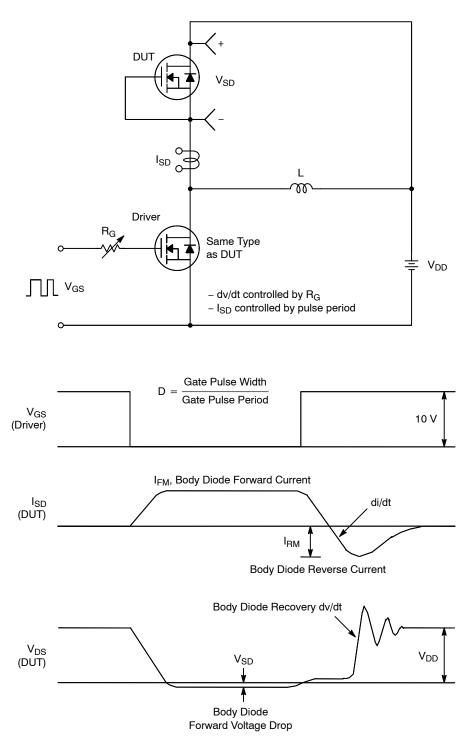
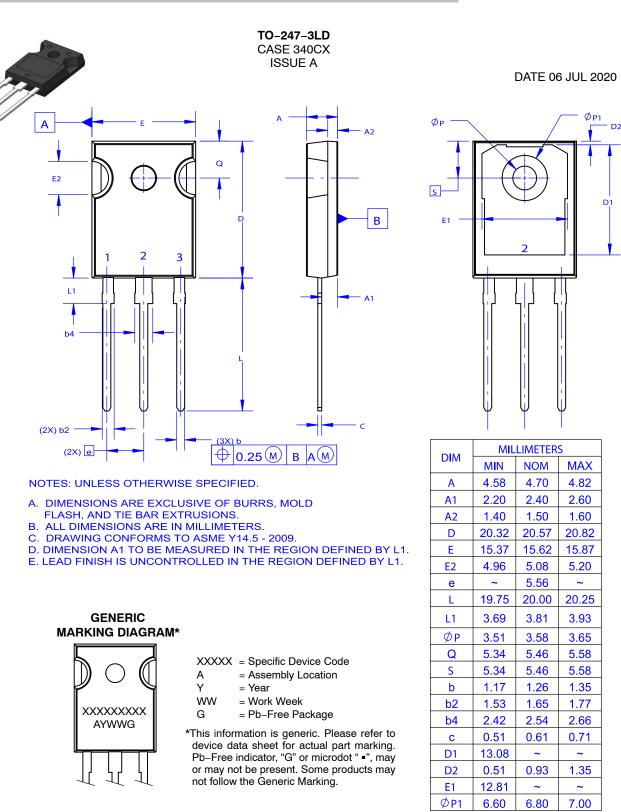



Figure 22. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET and FRFET are a registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON93302G Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥