

STB9NK90Z, STF9NK90Z STP9NK90Z, STW9NK90Z

N-channel 900 V, 1.1 Ω, 8 A, TO-220, TO-220FP, D²PAK, TO-247 Zener-protected SuperMESH™ Power MOSFET

Features

Туре	V _{DSS}	R _{DS(on)} max.	I _D	Pw
STB9NK90Z	900V			160 W
STW9NK90Z		<1.3Ω	8A	160 W
STP9NK90Z		<1.322	oA ·	160 W
STF9NK90Z				40 W

- Extremely high dv/dt capability
- 100% avalanche tested
- Gate charge minimized

■ Switching applications

Description

The SuperMESH™ series is obtained through an optimization of STMicroelectronics' well-established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly lower, it also ensures very good dv/dt capability for the most demanding applications. This series complement STs' full range of high voltage power MOSFETs.

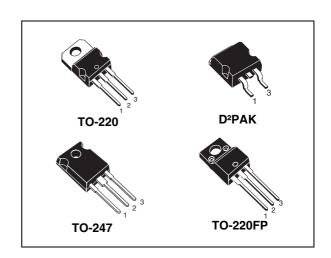


Figure 1. Internal schematic diagram

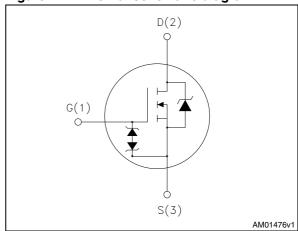


Table 1. Device summary

Order codes	Marking	Package	Packaging
STB9NK90Z	B9NK90	D²PAK	Tape and reel
STF9NK90Z	F9NK90Z	TO-220FP	
STP9NK90Z	P9NK90Z	TO-220	Tube
STW9NK90Z	W9NK90Z	TO-247	

May 2010 Doc ID 9479 Rev 7 1/17

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	
3	Test circuits	. 9
4	Package mechanical data	10
5	Packaging mechanical data	15
6	Revision history	16

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value		
Symbol	Parameter	TO-220, D ² PAK TO-247	TO-220FP	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	900		V
V _{GS}	Gate-source voltage	± 30		V
I _D	Drain current (continuous) at T _C = 25 °C	8	8 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C =100 °C	5 5 ⁽¹⁾		Α
I _{DM} ⁽²⁾	Drain current (pulsed)	32	32 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	160	40	W
	Derating Factor	1.28	0.32	W/°C
Vesd(G-S)	G-S ESD (HBM C=100 pF, R=1.5 kΩ)	4		KV
dv/dt ⁽³⁾	Peak diode recovery voltage slope	4.5		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1s;T _C =25°C)	all 2500		V
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 150		°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq$ 10 A, di/dt \leq 200 A/ μ s, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{Jmax}$.

Table 3. Thermal data

Symbol	Parameter	TO-220 D²PAK	TO-220FP	TO-247	Unit
R _{thj-case}	Thermal resistance junction-case max 0.78 3.1		0.78	°C/W	
R _{thj-a}	Thermal resistance junction-ambient max	62.5		50	°C/W
T _I	Maximum lead temperature for soldering purpose	300			°C

Table 4. Avalanche characteristics

Symbol Parameter		Value	Unit
I _{AR}	I _{AR} Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max.)		А
E _{AS} Single pulse avalanche energy (starting Tj=25 °C, I _D = I _{AR} , V _{DD} = 50 V) (see Figure 22)(see Figure 23)		300	mJ

577

Doc ID 9479 Rev 7

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	900			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max rating, V_{DS} = max rating @125 °C			1 50	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 3.6 \text{ A}$		1.1	1.3	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V, } f = 1 \text{ MHz,}$ $V_{GS} = 0$	-	2115 190 40	-	pF pF pF
C _{oss eq} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 720 V	-	115	-	pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 720 V, I_{D} = 8 A V_{GS} =10 V Figure 20	-	72 14 38	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

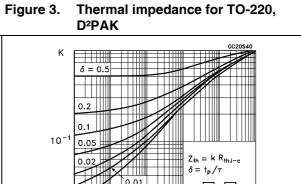
Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise Time	$V_{DD} = 450 \text{ V}, I_D = 4 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	22 13	-	ns ns
t _{d(off)}	Turn-off delay time Fall time	Figure 19 Figure 24	-	55 28	-	ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current				8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 8 A, V _{GS} =0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 8 \text{ A},$ $di/dt = 100 \text{ A/}\mu\text{s},$ $V_{DD} = 50 \text{ V}, \text{ Tj} = 150 \text{ °C}$ Figure 21	-	950 10 21		ns µC A

- 1. Pulse width limited by safe operating area
- 2. Pulsed: pulse duration=300 µs, duty cycle 1.5%


Table 9. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV_{GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA(open drain)}$	30	-		V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220, Figure 3. D²PAK

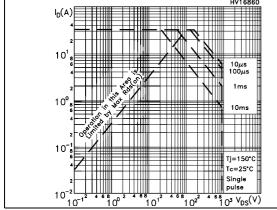
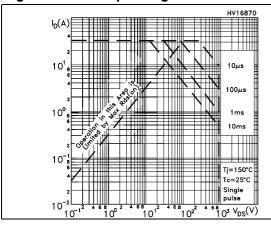



Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP

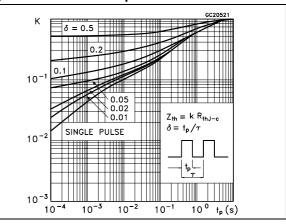
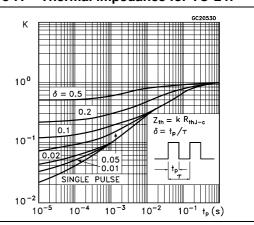



Figure 6. Safe operating area for TO-247

Figure 7. Thermal impedance for TO-247

6/17 Doc ID 9479 Rev 7

Figure 8. Output characteristics

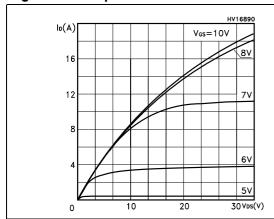


Figure 9. Transfer characteristics

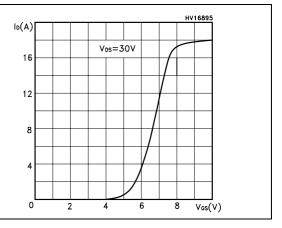


Figure 10. Transconductance

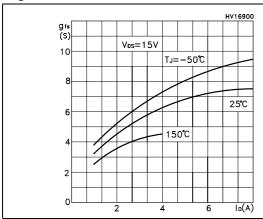


Figure 11. Static drain-source on resistance

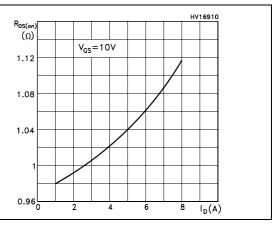
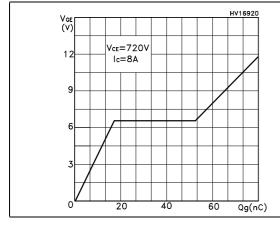



Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations

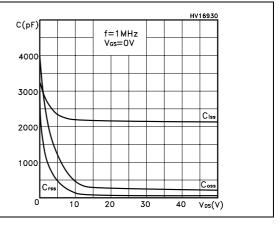


Figure 14. Normalized gate threshold voltage vs temperature

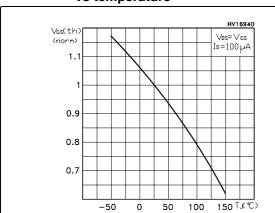


Figure 15. Normalized on resistance vs temperature

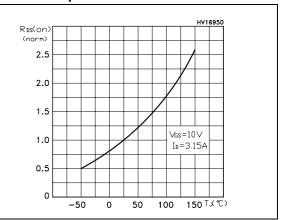
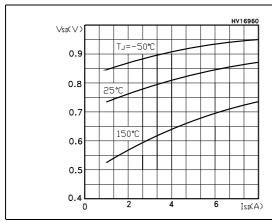



Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized B_{VDSS} vs temperature

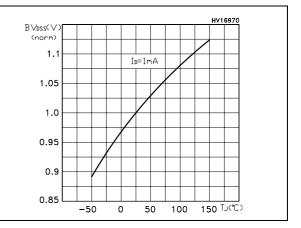
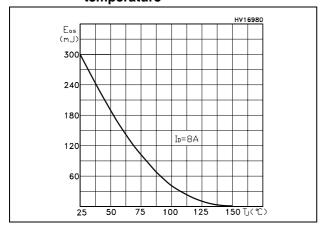



Figure 18. Maximum avalanche energy vs temperature

8/17 Doc ID 9479 Rev 7

3 Test circuits

Figure 19. Switching times test circuit for resistive load

Figure 20. Gate charge test circuit

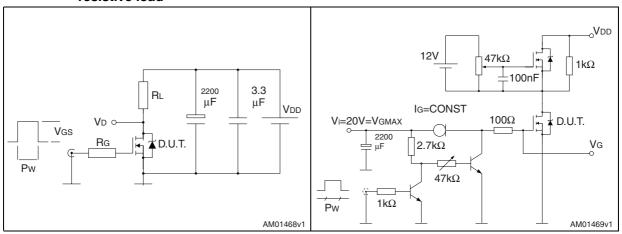


Figure 21. Test circuit for inductive load switching and diode recovery times

Figure 22. Unclamped Inductive load test circuit

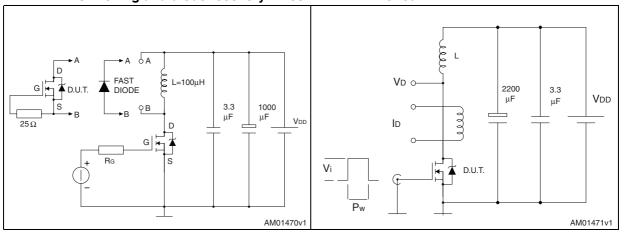
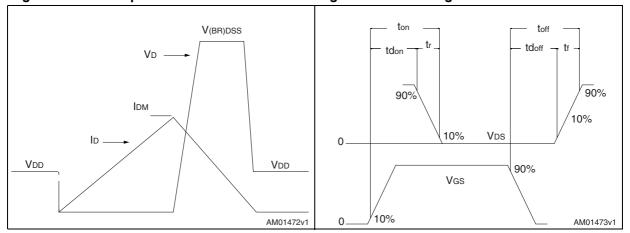
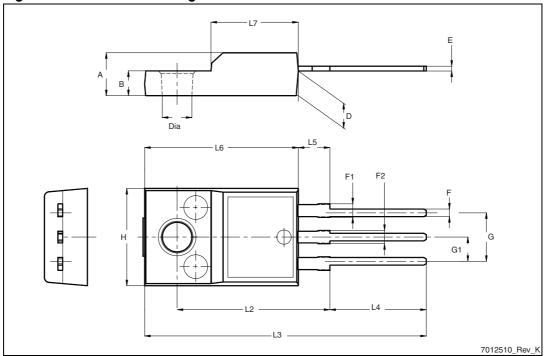



Figure 23. Unclamped inductive waveform

Figure 24. Switching time waveform

577

Doc ID 9479 Rev 7

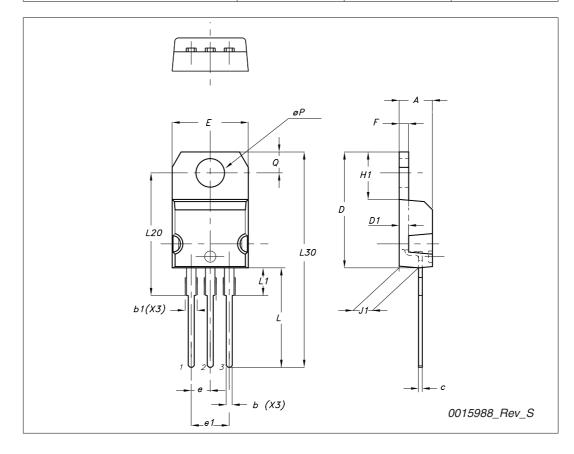

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 10. TO-220FP mechanical data

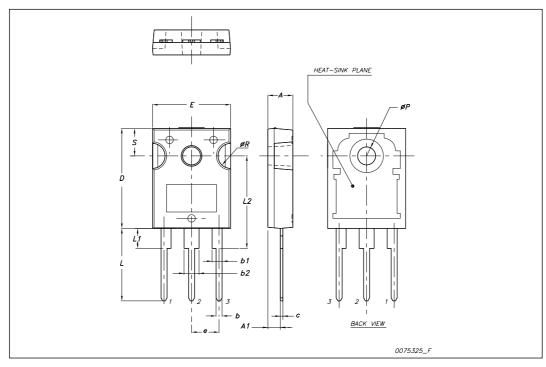
Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Figure 25. TO-220FP drawing



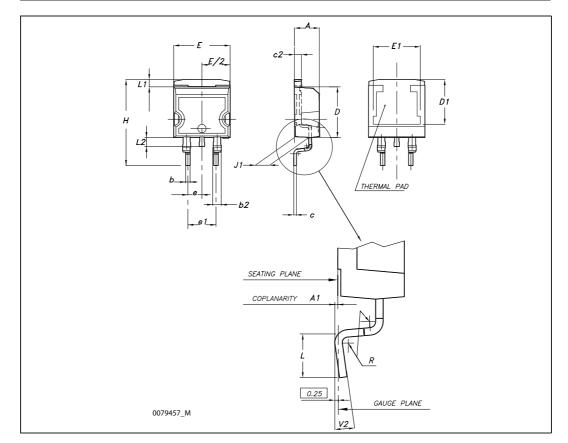
577

Doc ID 9479 Rev 7


TO-220 type A mechanical data

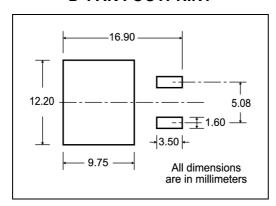
Dim	mm			
Dim	Min	Тур	Max	
A	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.70	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13		14	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
ØP	3.75		3.85	
Q	2.65		2.95	

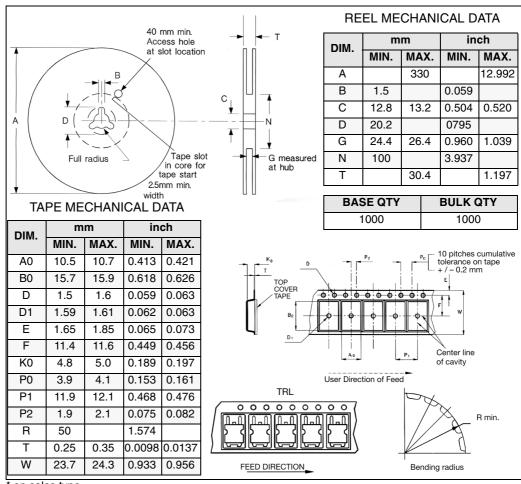
TO-247	mecha	nical	data
--------	-------	-------	------


Dim.	mm.			
DIM.	Min.	Тур.	Max.	
А	4.85		5.15	
A1	2.20		2.60	
b	1.0		1.40	
b1	2.0		2.40	
b2	3.0		3.40	
С	0.40		0.80	
D	19.85		20.15	
Е	15.45		15.75	
е		5.45		
L	14.20		14.80	
L1	3.70		4.30	
L2		18.50		
øΡ	3.55		3.65	
øR	4.50		5.50	
S		5.50		

577

D²PAK (TO-263) mechanical data


Dim	mm		inch			
	Min	Тур	Max	Min	Тур	Max
А	4.40		4.60	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.70		0.93	0.027		0.037
b2	1.14		1.70	0.045		0.067
С	0.45		0.60	0.017		0.024
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	7.50			0.295		
E	10		10.40	0.394		0.409
E1	8.50			0.334		
е		2.54			0.1	
e1	4.88		5.28	0.192		0.208
Н	15		15.85	0.590		0.624
J1	2.49		2.69	0.099		0.106
L	2.29		2.79	0.090		0.110
L1	1.27		1.40	0.05		0.055
L2	1.30		1.75	0.051		0.069
R		0.4			0.016	
V2	0°		8°	0°		8°


577

5 Packaging mechanical data

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

^{*} on sales type

47/

Doc ID 9479 Rev 7

6 Revision history

Table 11. Revision history

Date	Revision	Changes	
08-Sep-2005	2	Complete version	
27-Oct-2005	3	Inserted ecopack indication	
20-Jul-2006	4	New template, no content change	
20-Mar-2007	5	Typo mistake on cover page	
13-Jul-2007	6	Corrected unit on Table 5.: On/off states	
19-May-2010	7	Corrected Figure 18: Maximum avalanche energy vs temperature	

16/17 Doc ID 9479 Rev 7

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

Doc ID 9479 Rev 7 17/17