

N-channel 30 V, 0.0011 Ω typ., 45 A STripFETTM H6 Power MOSFET in a PowerFLATTM 5x6 package

Datasheet - production data

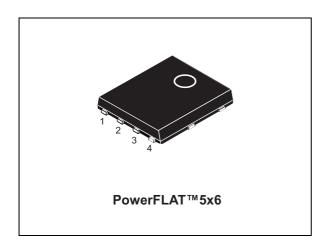
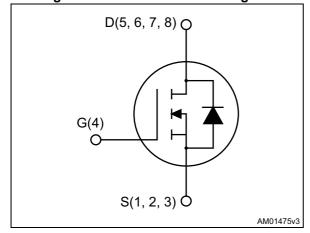



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	I _D
STL160N3LLH6	30 V	0.0013 Ω	45 A ⁽¹⁾

- 1. The value is rated according to $R_{thj-pcb}$
- · Very low on-resistance
- · Very low switching gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the 6^{th} generation of STripFETTM technology, with a new trench gate structure. The resulting Power MOSFET exhibits a very low $R_{DS(on)}$ in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL160N3LLH6	160N3LH6	PowerFLAT™ 5x6	Tape and reel

Contents STL160N3LLH6

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Packaging mechanical data1	2
6	Revision history	ı⊿

STL160N3LLH6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	240	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	170	Α
I _{DM} ^{(1),(3)}	Drain current (pulsed)	960	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	45	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} =100 °C	32	Α
I _{DM} ^{(2),(3)}	Drain current (pulsed)	180	Α
P _{TOT} (1)	Total dissipation at T _C = 25 °C	136	W
P _{TOT} (2)	Total dissipation at T _{pcb} = 25 °C	4.8	W
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 175	°C

- 1. The value is rated according to R_{thj-c}.
- 2. The value is rated according to $R_{thj\text{-pcb.}}$
- 3. Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.1	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb	31.3	°C/W

^{1.} When mounted on FR-4 board of 1inch 2 , 2oz Cu, t < 10 sec.

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AV}	Not-repetitive avalanche current (pulse width limited by T _j max)	35	А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AV}$)	900	mJ

Electrical characteristics STL160N3LLH6

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified).

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 250 \mu A$	30			V
1	Zero gate voltage drain	$V_{GS} = 0, V_{DS} = 30 \text{ V}$			1	μΑ
DSS	current	$V_{DS} = 30 \text{ V at } T_{C} = 125 \text{ °C}$			10	μA
I _{GSS}	Gate body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 \text{ V}$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1			V
В	Static drain-source on-	V _{GS} = 10 V, I _D = 17.5 A		0.0011	0.0013	Ω
R _{DS(on)}	resistance	V _{GS} = 4.5 V, I _D = 17.5 A		0.0016	0.0020	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	6375	-	pF
C _{oss}	Output capacitance	$V_{GS}=0, V_{DS}=25 V,$	-	1230	-	pF
C _{rss}	Reverse transfer capacitance	f=1 MHz	-	675	-	pF
Q_g	Total gate charge	V _{DD} =15 V, I _D = 35 A V _{GS} =4.5 V	-	61.5	-	nC
Q _{gs}	Gate-source charge		-	20		nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	24		nC
R _g	Gate input resistance	f = 1 MHz, gate DC Bias = 0, test signal level = 20 mV, I _D = 0	-	1.4	-	Ω

Table 7. Switching times

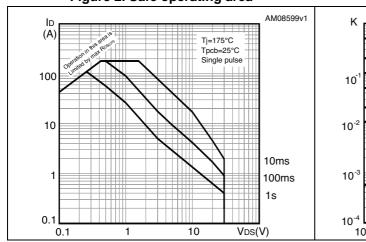
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	22.5	-	ns
t _r	Rise time	V _{DD} =15 V, I _D = 17.5 A, R _G =4.7 Ω, V _{GS} =10 V	-	32	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13)	-	107.5	-	ns
t _f	Fall time		-	54	-	ns

4/15 DocID18223 Rev 6

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		45	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		180	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} =0, I _{SD} = 35 A	-		1.1	V
t _{rr}	Reverse recovery time	I _{SD} = 35 A,	-	37.2		ns
Q _{rr}	Reverse recovery charge	di/dt = 100 A/μs,	-	36		nC
I _{RRM}	Reverse recovery current	V _{DD} =25 V	-	1.9		Α

^{1.} Pulse width limited by safe operating area.


^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%.

Electrical characteristics STL160N3LLH6

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

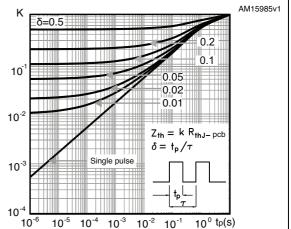
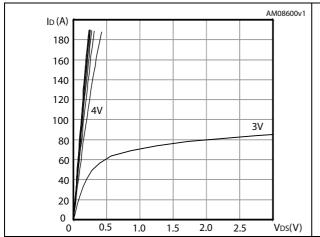



Figure 4. Output characteristics

Figure 5. Transfer characteristics

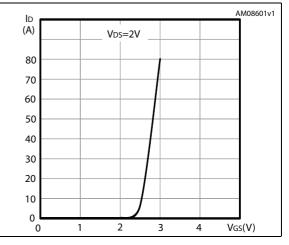
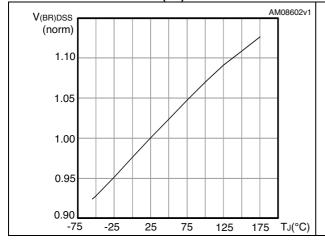
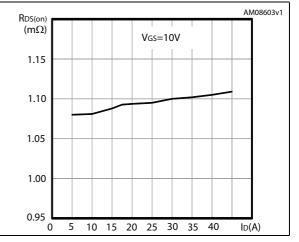




Figure 6. Normalized $V_{(BR)DSS}$ vs temperature

Figure 7. Static drain-source on-resistance

6/15 DocID18223 Rev 6

Figure 8. Gate charge vs gate-source voltage

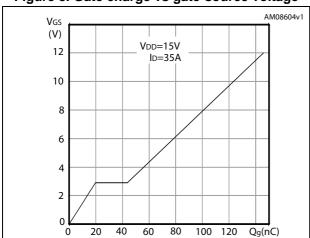


Figure 9. Capacitance variations

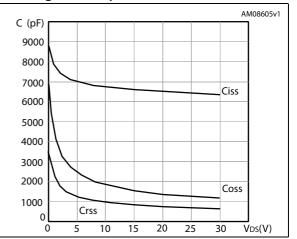
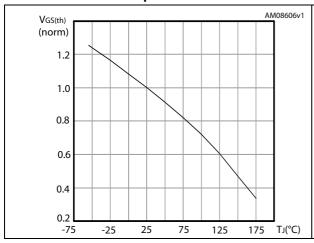



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

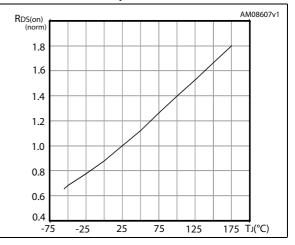
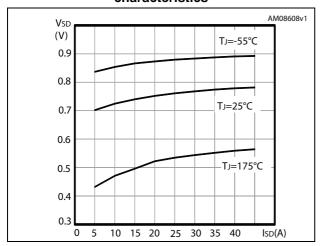



Figure 12. Source-drain diode forward characteristics

Test circuits STL160N3LLH6

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

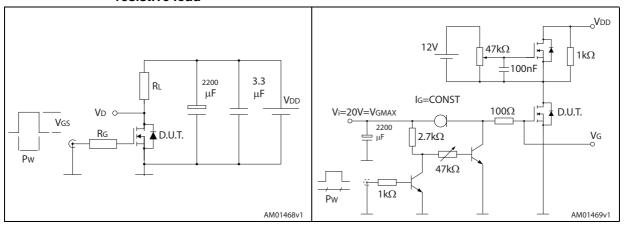


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

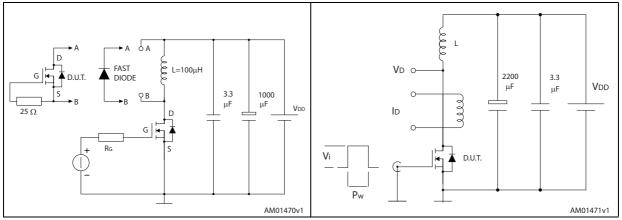
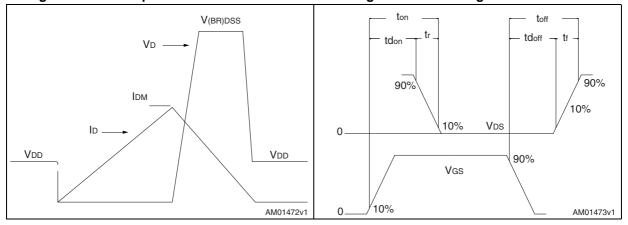



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

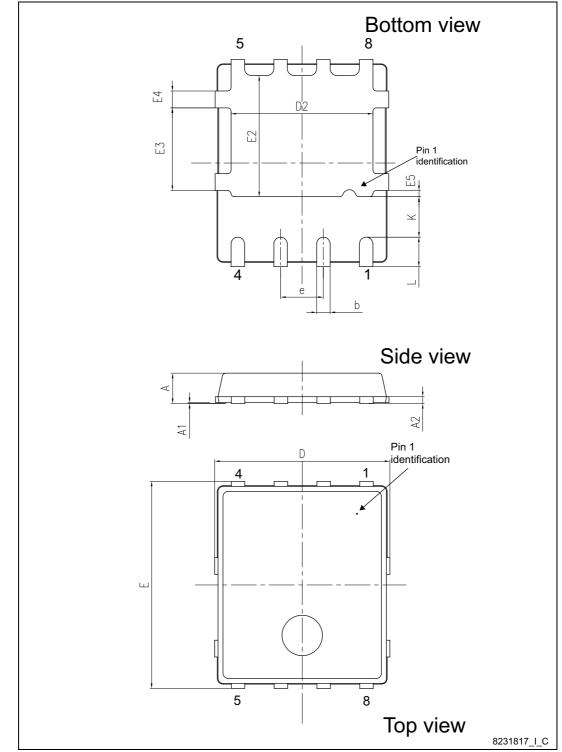
8/15 DocID18223 Rev 6

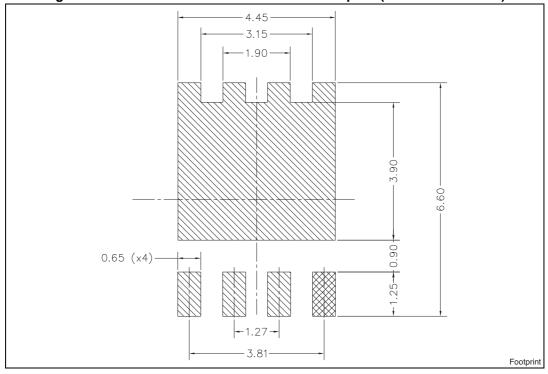
Downloaded from Arrow.com.

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

DocID18223 Rev 6




Figure 19. PowerFLAT™ 5x6 type S-C mechanical data

10/15 DocID18223 Rev 6

Table 9. PowerFLAT™ 5x6 type S-C mechanical data

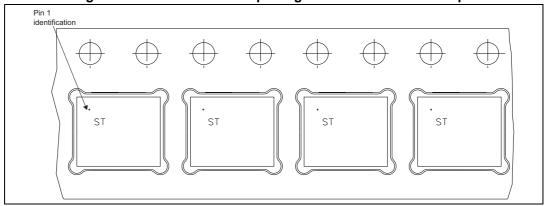
Dim		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D		5.20	
Е		6.15	
D2	4.11		4.31
E2	3.50		3.70
е		1.27	
e1		0.65	
L	0.715		1.015
K	1.05		1.35
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28

Figure 20. PowerFLAT™ 5x6 recommended footprint (dimensions in mm)

DocID18223 Rev 6

8234350_Tape_rev_C

5 Packaging mechanical data


(I) Measured from centerline of sprocket hole to centerline of pocket.

 $\label{eq:continuous} \begin{tabular}{ll} (II) & Cumulative tolerance of 10 sprocket holes is <math display="inline">\pm~0.20~. \end{tabular}$ (III) Measured from centerline of sprocket hole to centerline of pocket.

Figure 21. PowerFLAT™ 5x6 tape^(a)

Figure 22. PowerFLAT™ 5x6 package orientation in carrier tape

Base and bulk quantity 3000 pcs

Ay/

a. All dimensions are in millimeters.

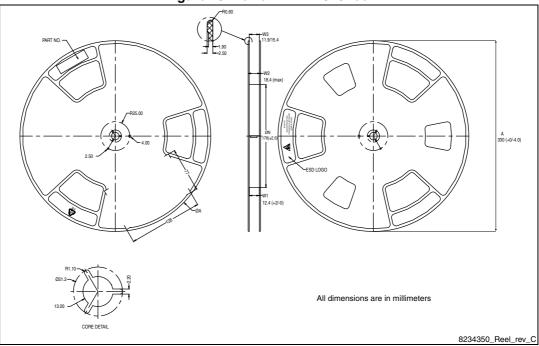


Figure 23. PowerFLAT™ 5x6 reel

DocID18223 Rev 6

13/15

Revision history STL160N3LLH6

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
10-Nov-2010	1	First release.
10-Nov-2011	2	Section 4: Package mechanical data has been updated. Minor text changes.
31-Jul-2013	3	 Modified: I_D in the title and in the Features Table, Table 5, 6 and 7 Modified: values on the Table 2, R_{thj-case} on the Table 3, max values for the I_{SD} and I_{SDM} on Table 8 Updated: Section 4: Package mechanical data Inserted: Section 5: Packaging mechanical data Modified: Figure 13, 14, 15 and 16 Minor text changes
09-Aug-2013	4	 Modified: drain current (continuous) at T_C = 100 °C value and drain current (continuous) at T_{pcb}=100 °C value Modified: test conditions of R_{DS(on)} Modified: I_D in <i>Table 6</i> and 7 Modified: I_{SD} in <i>Table 8</i> Modified: <i>Figure 2</i>, 3, 4, 5, 7, 12, 13, 14, 15 and 16 Updated: <i>Section 4: Package mechanical data</i> Minor text changes
24-Sep-2013	5	- Modified: marking in <i>Table 1</i> - Minor text changes
23-Sep-2014	6	 Modified: title Modified: Features Modified: Description Updated: Section 4: Package mechanical data Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

DocID18223 Rev 6

15/15