

100 V, 20 A power Schottky rectifier

Features

- · Low forward voltage drop meaning very small conduction losses
- Avalanche rated
- · Low frequency operation
- Insulated package TO-220FPAB:
 - Insulating voltage = 2000 V_{RMS} sine
- ECOPACK[®]2 compliant component for D²PAK on demand

Applications

- · Switching diode
- SMPS
- DC/DC converter
- LED lighting
- · Adapter for notebook and game station

Description

This single Schottky rectifier is suited for high frequency switch mode power supply.

Packaged in TO-220AB, TO-220FPAB, D²PAK and I²PAK, the STPS20M100S is intended to be used in notebook, game station and desktop adaptors, providing in these applications a good efficiency at both low and high load.

Product status link	
STPS20M100S	

Product summary				
I _{F(AV)}	20 A			
V _{RRM}	100 V			
V _F (typ.)	0.61 V			
T _j (max.)	150 °C			

1 Characteristics

Table 1. Absolute ratings (limiting values with anode terminals short circuited, at 25 °C unless otherwise specified)

Symbol	Parame	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage	Repetitive peak reverse voltage			
I _{F(RMS)}	Forward rms current			30	Α
I _{F(AV)}	Average forward current δ = 0.5, square wave $TO-220AB$ D^2PAK I^2PAK $TO-220FPAB$		$T_{\rm C}$ = 130 °C 20		Α
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$				Α
P _{ARM}	Repetitive peak avalanche power $t_p = 10 \mu s$, $T_j = 125 °C$			1150	W
T _{stg}	Storage temperature range				°C
Tj	Maximum operating junction temperature (1)			+150	°C

^{1.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameter

Symbol	Parameter			Unit	
Ru a	R _{th(j-c)} Junction to case	TO-220AB, D ² PAK, I ² PAK	1.2	°C/W	
'`tn(j-c)		TO-220FPAB	4	C/VV	

For more information, please refer to the following application note:

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics (anode terminals short circuited)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit		
	I _R ⁽¹⁾ Reverse leakage current	T _j = 25 °C	V _R = 70 V	-	5		μA		
I_ (1)		T _j = 125 °C	T _j = 125 °C	-	5		mA		
'R`		T _j = 25 °C	V _R = 100 V	-	10	40	μA		
		T _j = 125 °C	VR - 100 V	VR = 100 V	VR - 100 V	VR = 100 V	-	10	40
	$V_{F} \begin{tabular}{ll} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & $	T _j = 25 °C	I _F = 5 A	-	550				
		T _j = 125 °C		-	455				
V ₋ (2)		T _j = 25 °C		-	660	730	mV		
VF (=)		T _j = 125 °C	IF - 10 A	-	530	600	IIIV		
		T _j = 25 °C	I _F = 20 A	-	775	850			
		1F - 20 A	-	610	690				

^{1.} Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$

DS6169 - Rev 5 page 2/15

^{2.} Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

$$P = 0.425 \times I_{F(AV)} + 0.0088 \times I_{F}^{2} (RMS)$$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

1.1 Characteristics (curves)

Figure 1. Average forward power dissipation versus average forward current (anode terminals short circuited)

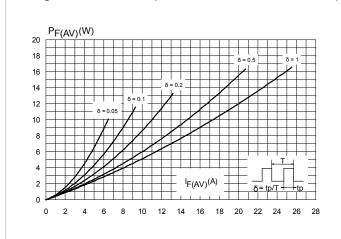


Figure 2. Average forward current versus ambient temperature (δ = 0.5, anode terminals short circuited)

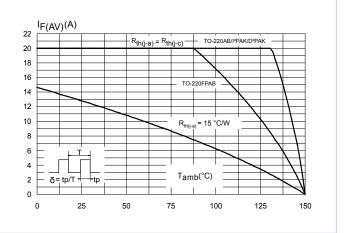


Figure 3. Normalized avalanche power derating versus pulse duration ($T_i = 125$ °C)

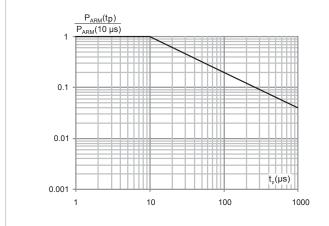
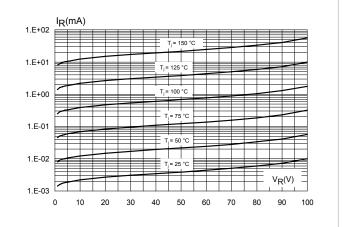



Figure 4. Reverse leakage current versus reverse voltage applied (typical values)

DS6169 - Rev 5 page 3/15

Figure 5. Relative variation of thermal impedance junction to case versus pulse duration (TO-220AB, D²PAK, I²PAK)

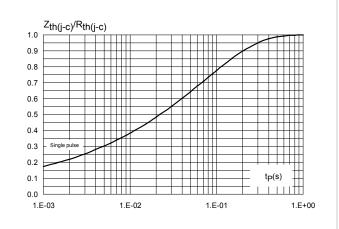


Figure 6. Relative variation of thermal impedance junction to case versus pulse duration (TO-220FPAB)

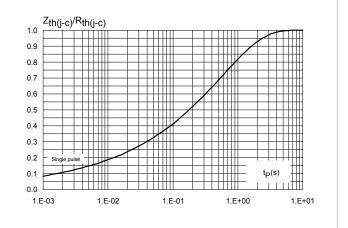


Figure 7. Junction capacitance versus reverse voltage applied (typical values)

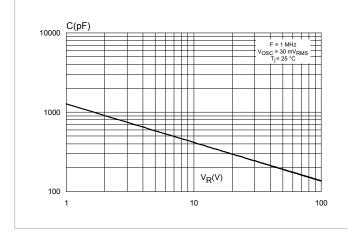


Figure 8. Forward voltage drop versus forward current (anode terminals short circuited)

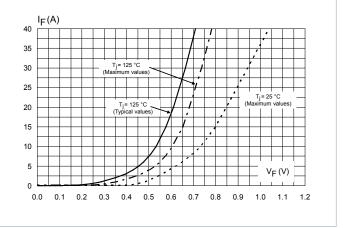
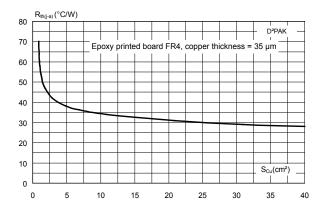



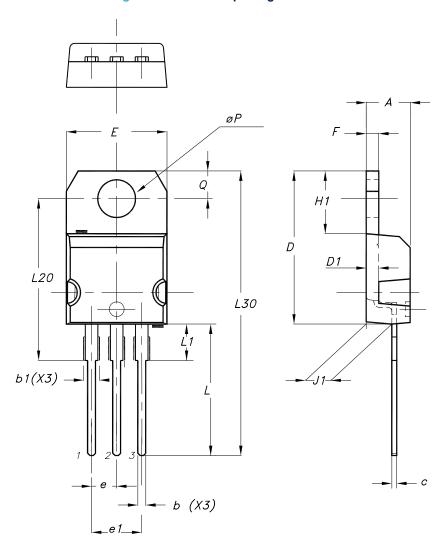
Figure 9. Thermal resistance junction to ambient versus copper surface under tab for D2PAK

DS6169 - Rev 5 page 4/15

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 TO-220AB package information


• Epoxy meets UL 94,V0

Cooling method: by conduction (C)

Recommended torque value: 0.55 N·m

Maximum torque value: 0.70 N·m

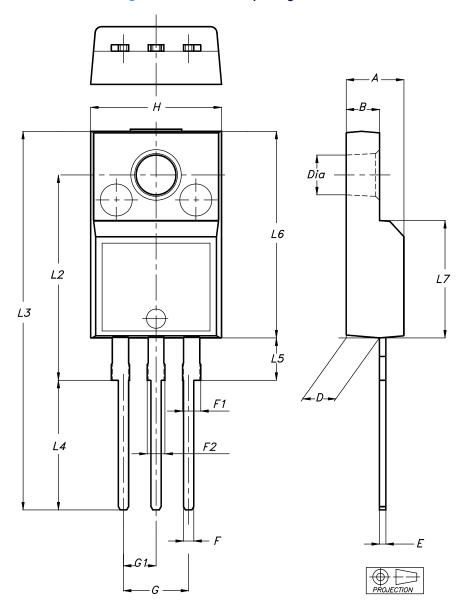
Figure 10. TO-220AB package outline

DS6169 - Rev 5 page 5/15

Table 4. TO-220AB package mechanical data

	Dimensions				
Ref.	Millimeters		Inches (for re	ference only)	
	Min.	Max.	Min.	Max.	
А	4.40	4.60	0.173	0.181	
b	0.61	0.88	0.240	0.035	
b1	1.14	1.55	0.045	0.061	
С	0.48	0.70	0.019	0.028	
D	15.25	15.75	0.600	0.620	
D1	1.27	7 typ.	0.050 typ.		
E	10.00	10.40	0.394	0.409	
е	2.40	2.70	0.094	0.106	
e1	4.95	5.15	0.195	0.203	
F	1.23	1.32	0.048	0.052	
H1	6.20	6.60	0.244	0.260	
J1	2.40	2.72	0.094	0.107	
L	13.00	14.00	0.512	0.551	
L1	3.50	3.93	0.138	0.155	
L20	16.40 typ.		0.640	6 typ.	
L30	28.9	28.90 typ.		3 typ.	
θР	3.75	3.85	0.148	0.152	
Q	2.65	2.95	0.104	0.116	

DS6169 - Rev 5 page 6/15


2.2 TO-220FPAB package information

Epoxy meets UL 94,V0

Cooling method: by conduction (C)
Recommended torque value: 0.55 N·m

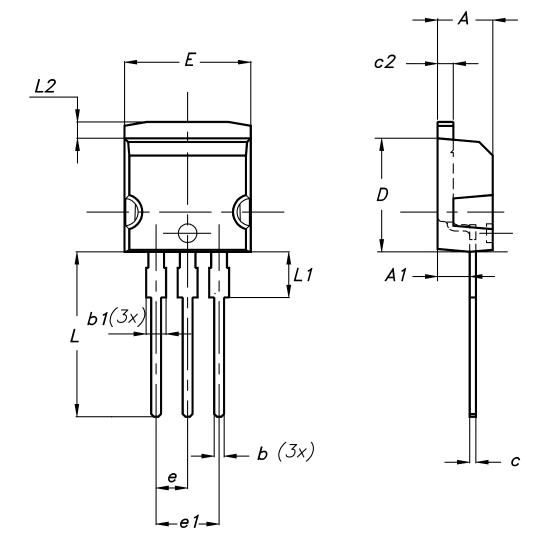
Maximum torque value: 0.70 N·m

Figure 11. TO-220FPAB package outline

DS6169 - Rev 5 page 7/15

Table 5. TO-220FPAB package mechanical data

	Dimensions					
Ref.	Millin	neters	Inches (for reference only)			
	Min. Max.		Min.	Max.		
Α	4.40	4.60	0.1739	0.1818		
В	2.50	2.70	0.0988	0.1067		
D	2.50	2.75	0.0988	0.1087		
E	0.45	0.70	0.0178	0.0277		
F	0.75	1.00	0.0296	0.0395		
F1	1.15	1.15 1.70		0.0672		
F2	1.15	1.70	0.0455	0.0672		
G	4.95	5.20	0.1957	0.2055		
G1	2.40	2.70	0.0949	0.1067		
Н	10.00	10.40	0.3953	0.4111		
L2	16.00	0 typ.	0.632	4 typ.		
L3	28.60	30.60	1.1304	1.2095		
L4	9.80	10.60	0.3874	0.4190		
L5	2.90	3.60	0.1146	0.1423		
L6	15.90	16.40	0.6285	0.6482		
L7	9.00	9.30	0.3557	0.3676		
Dia	3.00	3.20	0.1186	0.1265		


DS6169 - Rev 5 page 8/15

2.3 I²PAK package information

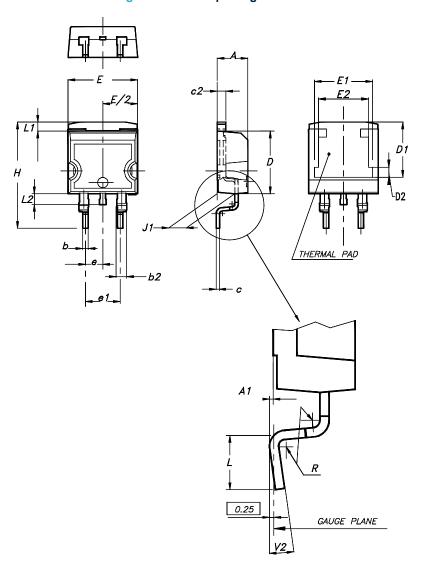
- Epoxy meets UL 94,V0
- Cooling method: by conduction (C)

Figure 12. I²PAK package outline

DS6169 - Rev 5 page 9/15

Table 6. I²PAK package mechanical data

	Dimensions					
Ref.	Millin	neters	Inches (for re	ference only)		
	Min.	Max.	Min.	Max.		
A	4.40	4.60	0.173	0.181		
A1	2.40	2.72	0.094	0.107		
b	0.61	0.88	0.024	0.035		
b1	1.14	1.70	0.044	0.067		
С	0.49	0.70	0.019	0.028		
c2	1.23	1.32	0.048	0.052		
D	8.95	9.35	0.352	0.368		
е	2.40	2.70	0.094	0.106		
e1	4.95	5.15	0.195	0.203		
E	10.00	10.40	0.394	0.409		
L	13.00	14.00	0.512	0.551		
L1	3.50	3.93	0.138	0.155		
L2	1.27	1.40	0.050	0.055		


DS6169 - Rev 5 page 10/15

2.4 D²PAK package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)

Figure 13. D²PAK package outline

Note: This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

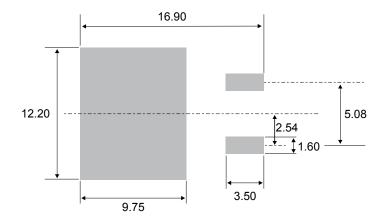

DS6169 - Rev 5 page 11/15

Table 7. D²PAK package mechanical data

	Dimensions					
Ref.	Millir	neters	Inches (for re	ference only)		
	Min.	Max.	Min.	Max.		
А	4.36	4.60	0.172	0.181		
A1	0.00	0.25	0.000	0.010		
b	0.70	0.93	0.028	0.037		
b2	1.14	1.70	0.045	0.067		
С	0.38	0.69	0.015	0.027		
c2	1.19	1.36	0.047	0.053		
D	8.60	9.35	0.339	0.368		
D1	6.90	8.00	0.272	0.311		
D2	1.10	1.50	0.043	0.060		
E	10.00	10.55	0.394	0.415		
E1	8.10	8.90	0.319	0.346		
E2	6.85	7.25	0.266	0.282		
е	2.54	4 typ.	0.100			
e1	4.88	5.28	0.190	0.205		
Н	15.00	15.85	0.591	0.624		
J1	2.49	2.90	0.097	0.112		
L	1.90	2.79	0.075	0.110		
L1	1.27	1.65	0.049	0.065		
L2	1.30	1.78	0.050	0.070		
R	0.4	typ.	0.015			
V2	0°	8°	0°	8°		

Figure 14. D²PAK recommended footprint (dimensions in mm)

DS6169 - Rev 5 page 12/15

3 Ordering information

Table 8. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS20M100ST	PS20M100ST	TO-220AB	1.95 g	50	Tube
STPS20M100SFP	PS20M100SFP	TO-220FPAB	1.90 g	50	Tube
STPS20M100SR	PS20M100SR	I²PAK	1.50 g	50	Tube
STPS20M100SG-TR	PS20M100SG	D²PAK	1.48 g	1000	Tape and reel

DS6169 - Rev 5 page 13/15

Revision history

Table 9. Document revision history

Date	Version	Changes
25-Mar-2009	1	First issue.
16-Apr-2010	2	Updated package graphic for TO-220AB on front page and in Table 5.
24-May-2016	3	Updated cover page. Complete Characteristics section update. Updated Section 2.4: "D²PAK package information" and Table 9: "Ordering information".
28-Sep-2018	4	Updated cover page, Table 1. Absolute ratings (limiting values with anode terminals short circuited, at 25 °C unless otherwise specified) and Table 8. Ordering information. Removed figure 1 and figure 11. Minor text changes to improve readability.
18-Feb-2019	5	Updated Table 1.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS6169 - Rev 5 page 15/15