

STL40C30H3LL

N-channel 30 V, 0.019 Ω typ., 10 A, P-channel 30 V, 0.024 Ω typ.,8 A STripFETTM VI Power MOSFET in a PowerFLAT 5x6 d. i. package

Datasheet - production data

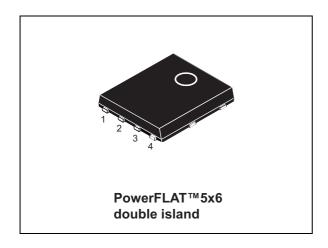
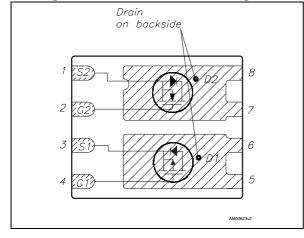



Figure 1. Internal schematic diagram

Features

Order code	Channel	V _{DS}	R _{DS(on)} max	I _D
STL40C30H3LL	N	30 V	0.021 Ω @ 10 V	10 A
STL40C30H3LL	C30H3LL P		0.03 Ω @ 10 V	8 A

- R_{DS(on)} * Q_g industry benchmark
- Extremely low on-resistance R_{DS(on)}
- · High avalanche ruggedness
- Low gate drive power losses

Applications

· Switching applications

Description

This device is a complementary N-channel and P-channel Power MOSFET developed using STripFET™ V (P-channel) and STripFET™ VI DeepGATE™ (N-channel) technologies. The resulting device exhibits low on-state resistance and an FOM among the lowest in its voltage class.

Table 1. Device summary

Order code	Marking	Packages	Packaging
STL40C30H3LL	40C30H3L	PowerFLAT 5x6 double island	Tape and reel

Note: For the P-channel MOSFET actual polarity of voltages and current has to be reversed

This is information on a product in full production.

Contents STL40C30H3LL

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves) for N-channel 6
	2.2 Electrical characteristics (curves) for P-channel 8
3	Test circuits for N-channel10
4	Test circuits for P-channel11
5	Package mechanical data
6	Packaging mechanical data16
7	Revision history

STL40C30H3LL Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Cumbal	Parameter	Val	ue	Unit
Symbol	raiametei	N-channel	P-channel	Onit
V _{DS}	Drain-source voltage (v _{gs} = 0)	30	0	V
V_{GS}	Gate- source voltage	±2	20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25°C 40 30 30		А	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100°C single operating	25	18.75	А
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25°C single operating	10	8	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100°C single operating	6.5	5	А
I _{DM} (2)(3)	Drain current (pulsed)	40	32	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25°C 60		0	W
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25°C 4		W	
T _{stg}	Storage temperature	temperature -55 to 150		°C
T _j	Operating junction temperature 150		°C	

^{1.} The value is rated according to R_{thj-c}

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-c}	Thermal resistance junction-case	2.08	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb single operation	32.00	°C/W

^{1.} When mounted on 1 inch² FR-4 board, 2 oz. Cu., $t \le 10$ sec

Note: For the P-channel MOSFET actual polarity of voltages and current has to be reversed

^{2.} This value is rated according to $R_{\mbox{\scriptsize thj-pcb}}$

^{3.} Pulse width is limited by safe operating area

Electrical characteristics STL40C30H3LL

2 **Electrical characteristics**

Table 4. On/off states

Symbol	Parameter	Test conditions	Channel	Min.	Тур.	Max.	Unit
V	Drain-source	L = 250 uA V = = 0	N	30			V
V _{(BR)DSS}	breakdown voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0$	Р	30			V
		V _{DS} = 30 V	N			1	Δ
lana	Zero gate voltage	V _{DS} = 30 V	Р			'	μΑ
I _{DSS}	drain current ($V_{GS} = 0$)	V _20 V T _125 °C	N			10	
		V _{DS} =30 V, T _C =125 °C	Р			10	μΑ
	Gate-body leakage	V - 120 V	N			±100	nA
IGSS	current (V _{DS} = 0)	V _{GS} = ±20 V	Р			±100	ПА
V	Cata threshold voltage	V V I 050A	N	1			V
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu$ A	Р	'			V
		V 10 V I 1 A A	N		0.019	0.021	Ω
Ь	Static drain-source	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$	Р		0.024	0.03	Ω
R _{DS(on)}	on-resistance	V = 45 V I = 4 A	N		0.023	0.028	Ω
		$V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$	Р		0.038	0.05	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Channel	Min.	Тур.	Max.	Unit
	Input capacitance		N	-	475	-	pF
C _{iss}	input capacitance		Р	-	1450	-	pF
C	Output capacitance	V _{DS} = 24 V, f = 1 MHz,	N	-	97	-	pF
C _{oss}	Output capacitance	$V_{GS} = 0$	Р	-	178	-	pF
C _{rss}	Reverse transfer		N	1	19	ı	pF
Orss	capacitance		Р	-	120	1	pF
0	Total gate charge		N	-	4.6	-	nC
Qg	Total gate charge		Р	ı	12	ı	nC
0	Gate-source charge	V _{DD} =24 V I _D =8 A V _{GS} = 4.5 V	N	-	1.7	1	nC
Q_{gs}	Gale-Source charge	(see Figure 25)	Р	-	4.4	-	nC
0.	Gate-drain charge	,	N	1	1.9	-	nC
Q _{gd}	Gate-drain charge		Р	-	5	-	nC

Note: For the P-channel MOSFET actual polarity of voltages and current has to be reversed

DocID023874 Rev 5 4/19

Table 6. Switching times

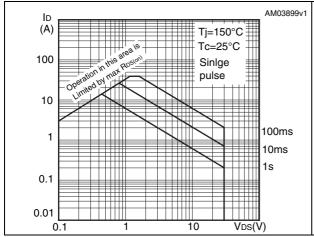
Symbol	Parameter	Test conditions	Channel	Min.	Тур.	Max.	Unit
+	$t_{d(on)}$ Turn-on delay time $t_r \qquad \text{Rise time}$		N	-	4	-	ns
^t d(on)			Р	-	15	-	ns
+			N	-	22	-	ns
۲r		$V_{DD} = 24 \text{ V}, I_{D} = 4 \text{ A}$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	Р	-	15	-	ns
+	Turn-off delay time	Figure 24	N	-	13	-	ns
t _{d(off)}			Р	-	24	-	ns
+	t _f Fall time		N	-	2.8	-	ns
Ч			Р	-	21	-	ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Channel	Min.	Тур.	Max.	Unit
	Source-drain current		N	-		10	Α
I _{SD}	Source-drain current		Р	1		8	Α
I _{SDM} ⁽¹⁾	Source-drain current		N	-		40	Α
'SDM `	(pulsed)		Р	-		32	Α
V _{SD} ⁽²⁾	Forward on voltage	Forward on voltage $I_{SD} = 8A$, $V_{GS} = 0$	N	1		1.1	V
VSD \	V _{SD} (=) Forward on voltage		Р	-		1.1	v
	Davaraa raaayan, tima		N	-	16.2		ns
t _{rr}	Reverse recovery time	neverse recovery time	Р	-	15		ns
0	Reverse recovery	$I_{SD} = 8 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s}$	N	-	8.1		nC
Q _{rr}	charge	V _{DD} =16 V, T _j =150 °C Figure 26	Р	-	6.5		nC
	Reverse recovery		N	-	1		Α
I _{RRM}	current		Р	-	0.9		Α

^{1.} Pulse width limited by safe operating area.

Note: For the P-channel MOSFET actual polarity of voltages and current has to be reversed


^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STL40C30H3LL

Electrical characteristics (curves) for N-channel 2.1

Figure 2. Safe operating area

Figure 3. Thermal impedance

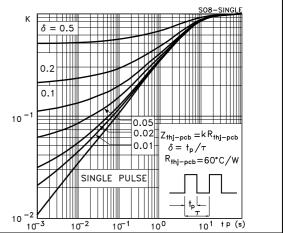
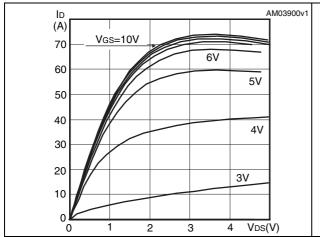



Figure 4. Output characteristics

Figure 5. Transfer characteristics

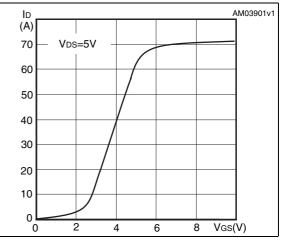
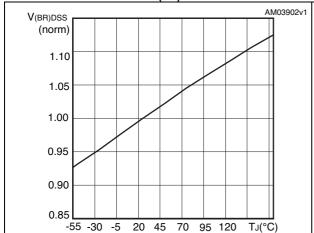
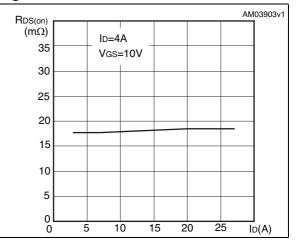




Figure 6. Normalized $V_{(BR)DSS}$ vs temperature

Figure 7. Static drain-source on-resistance

DocID023874 Rev 5 6/19

Figure 8. Gate charge vs gate-source voltage

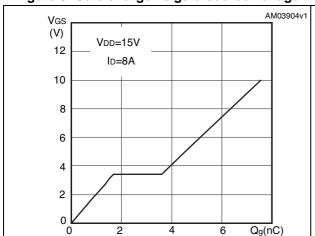


Figure 9. Capacitance variations

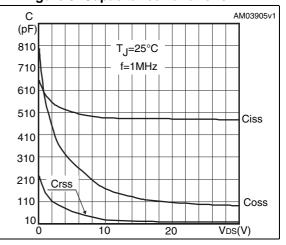
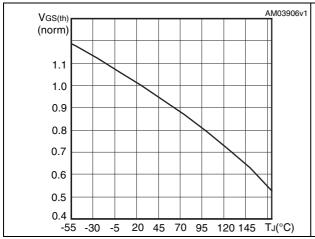



Figure 10. Normalized gate threshold voltage vs temperature

Figure 11. Normalized on-resistance vs temperature

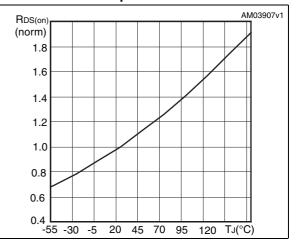
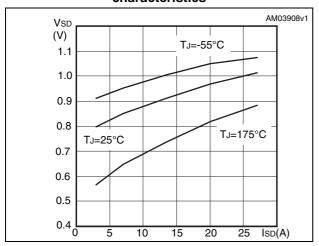
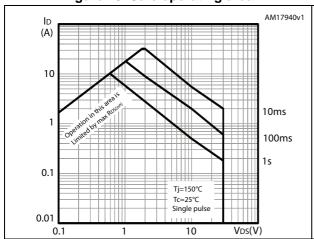



Figure 12. Source-drain diode forward characteristics



Electrical characteristics STL40C30H3LL

2.2 Electrical characteristics (curves) for P-channel

Figure 13. Safe operating area

Figure 14. Thermal impedance

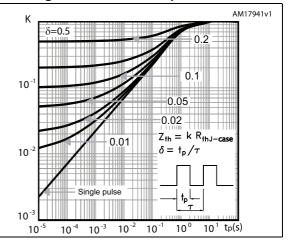
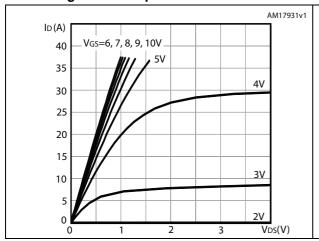



Figure 15. Output characteristics

Figure 16. Transfer characteristics

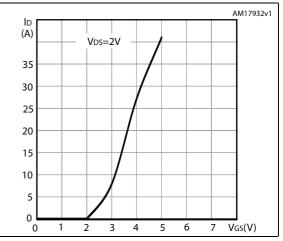
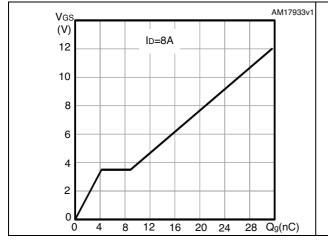
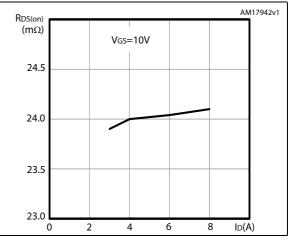
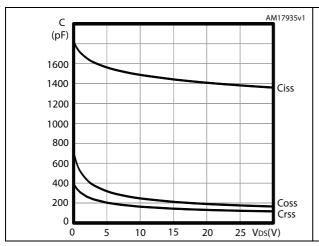




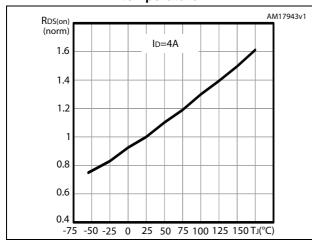
Figure 17. Gate charge vs gate-source voltage

Figure 18. Static drain-source on-resistance



8/19 DocID023874 Rev 5

Figure 19. Capacitance variations


Figure 20. Normalized gate threshold voltage vs temperature

V_{GS(th)} (norm) | I_D=250μA | 1.2 | 1 | 0.8 | 0.6 | 0.4 | -75 -50 -25 0 25 50 75 100 125 150 TJ(°C)

Figure 21. Normalized on-resistance vs temperature

Figure 22. Normalized $V_{(BR)DSS}$ vs temperature

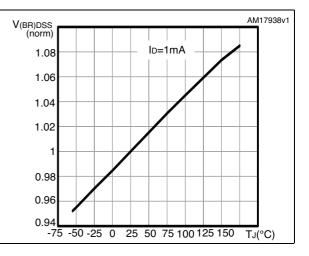
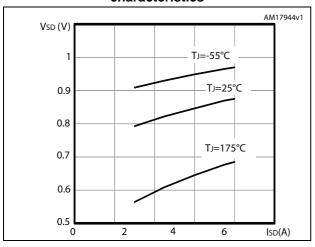



Figure 23. Source-drain diode forward characteristics

577

DocID023874 Rev 5

9/19

3 Test circuits for N-channel

Figure 24. Switching times test circuit for resistive load

Figure 25. Gate charge test circuit

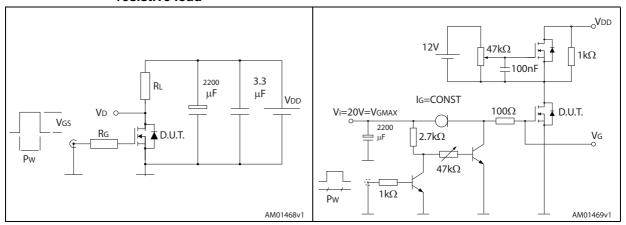


Figure 26. Test circuit for inductive load switching and diode recovery times

Figure 27. Unclamped inductive load test circuit

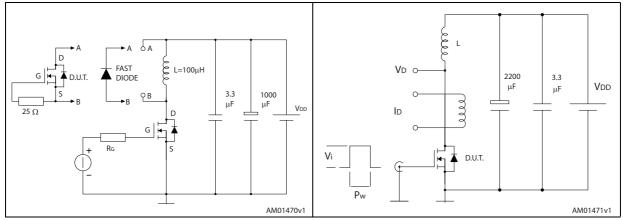
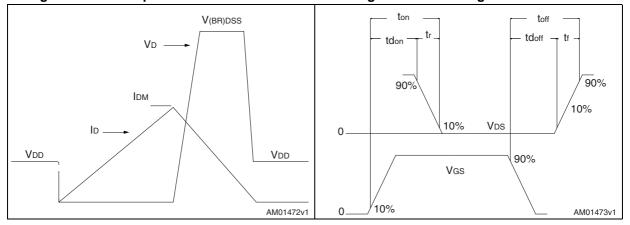



Figure 28. Unclamped inductive waveform

Figure 29. Switching time waveform

10/19 DocID023874 Rev 5

57

4 Test circuits for P-channel

Figure 30. Switching times test circuit for resistive load

Figure 31. Gate charge test circuit

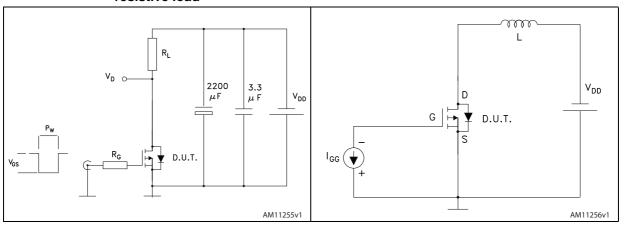
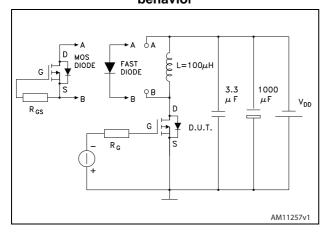



Figure 32. Test circuit for diode recovery behavior

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

577

12/19 DocID023874 Rev 5

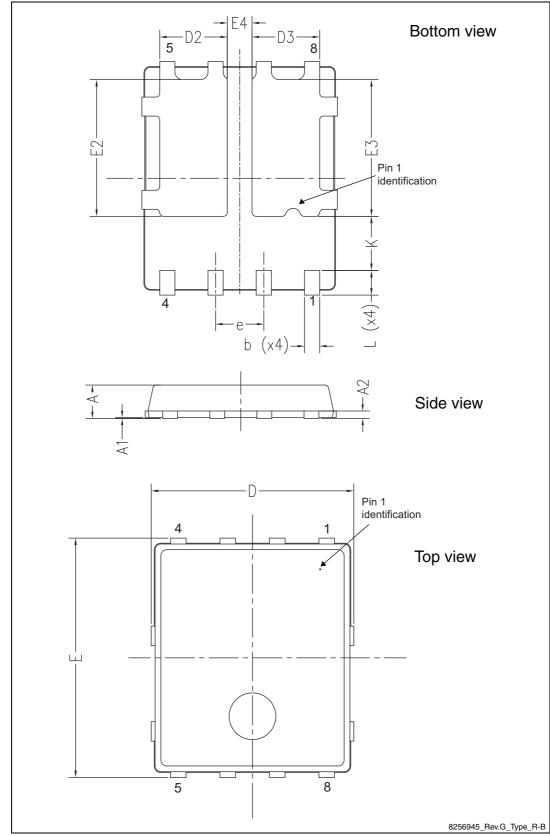


Figure 33. PowerFLAT™ 5x6 - double island type R-B drawing

57/

DocID023874 Rev 5

13/19

Table 8. PowerFLAT™ 5x6 - double island type R-B mechanical data

Def	Dimensions (mm)				
Rei.	Min.	Тур.	Max.		
Α	0.80		1.00		
A1	0.02		0.05		
A2		0.25			
b	0.30		0.50		
D	5.00	5.20	5.40		
E	5.95	6.15	6.35		
D2	1.68		1.88		
E2	3.50		3.70		
D3	1.68		1.88		
E3	3.50		3.70		
E4	0.55		0.75		
е		1.27			
L	0.60		0.80		
K	1.275		1.575		

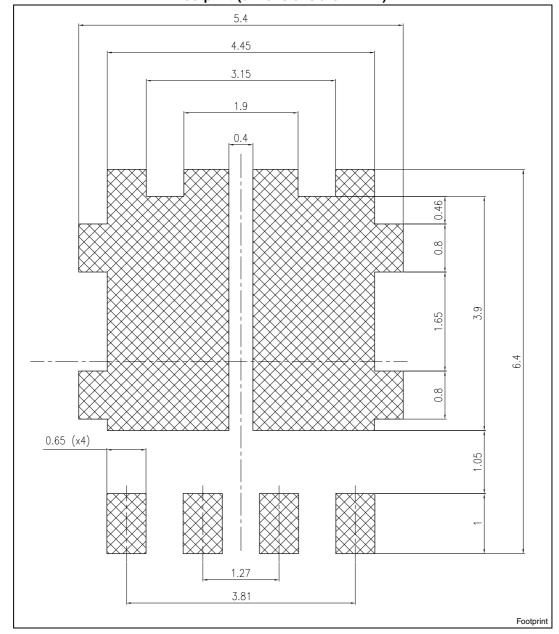


Figure 34. PowerFLAT™ 5x6 - double island type R-B drawing recommended footprint (dimensions are in mm)

6 Packaging mechanical data

Figure 35. PowerFLAT™ 5x6 tape^(a)

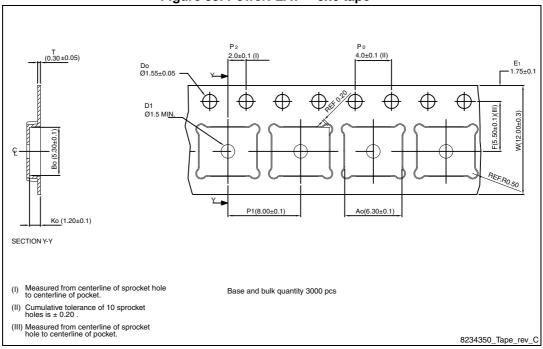
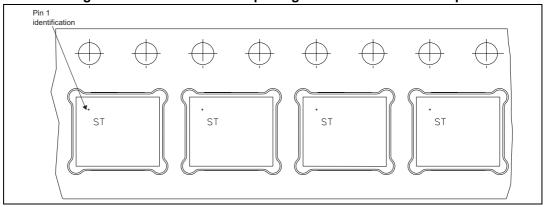



Figure 36. PowerFLAT™ 5x6 package orientation in carrier tape.

577

16/19 DocID023874 Rev 5

a. All dimensions are in millimeters.

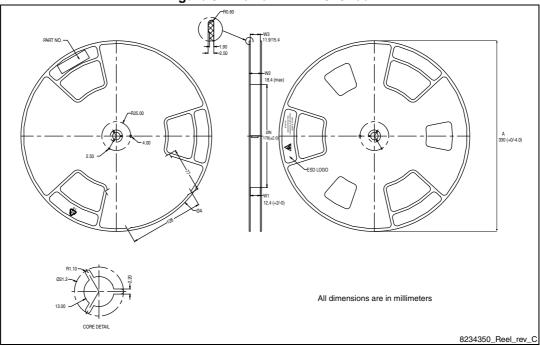


Figure 37. PowerFLAT™ 5x6 reel

Revision history STL40C30H3LL

7 Revision history

Table 9. Revision history

Date	Revision	Changes
31-Oct-2012	1	First revision.
09-Nov-2012	2	 Modified: R_{DS(on)} values for N-channel Changed: Section 5 on page 12
13-Feb-2013	3	 Modified: R_{DS(on)} only for P-channel on the title, <i>Features</i> table and <i>Table 4</i> Modified: typical values on <i>Table 5</i>, 28, 29, V_{SD} max value on <i>Table 29</i> (only for P-channel) Updated: <i>Section 5: Package mechanical data</i> and <i>Section 6: Packaging mechanical data</i>
28-Nov-2013	4	 Modified: V_{GS} (for P-channel) value in <i>Table</i> 2 Modified: I_{GSS} (test conditions values) Modified: Q_g typical values Modified: <i>Figure</i> 24, 25, 26, 27, 28, 29, 30 and 31 Updated: <i>Section</i> 5: <i>Package mechanical data</i> Minor text changes
03-Apr-2014	5	- Added: Section 2.1: Electrical characteristics (curves) for N-channel - Minor text changes

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID023874 Rev 5 19/19