

STL28N60DM2

N-channel 600 V, 0.155 Ω typ., 21 A MDmesh™ DM2 Power MOSFET in a PowerFLAT™ 8x8 HV package

Datasheet - production data

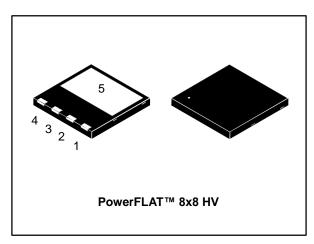
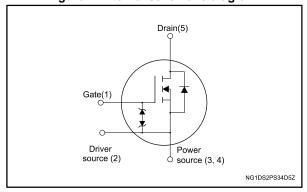



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax.}	R _{DS(on)} max.	ID	Ртот
STL28N60DM2	650 V	0.175 Ω	21 A	140 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh™ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STL28N60DM2	28N60DM2	PowerFLAT™ 8x8 HV	Tape and reel

October 2015 DocID026786 Rev 2 1/15

Contents STL28N60DM2

Contents

1	Electrical ratings		3	
2	Electric	al characteristics	4	
	2.1	Electrical characteristics (curves)	6	
3	Test cir	cuits	8	
4	Packag	e information	9	
	4.1	PowerFLAT 8x8 HV package information	10	
	4.2	PowerFLAT 8x8 HV packing information	12	
5	Revisio	n history	14	

STL28N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±25	V
Ip ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	21	۸
ID	Drain current (continuous) at T _{case} = 100 °C	14	A
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	84	А
P _{TOT} ⁽¹⁾	Total dissipation at T _{case} = 25 °C	140	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	50	V/ns
dv/dt ⁽⁴⁾	dv/dt ⁽⁴⁾ MOSFET dv/dt ruggedness		V/ns
T _{stg}	Storage temperature		°C
Tj	Operating junction temperature	-55 to 150	C

Notes:

Table 3: Thermal data

Symbol Parameter		Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.89	°C/W
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-ambient	45	*C/VV

Notes:

Table 4: Avalanche characteristics

Symbol Parameter		Value	Unit	
I _{AR} ⁽¹⁾	I _{AR} ⁽¹⁾ Avalanche current, repetitive or not repetitive			
E _{AS} ⁽²⁾ Single pulse avalanche energy		350	mJ	

Notes:

⁽¹⁾ The value is limited by package.

⁽²⁾ Pulse width limited by safe operating area.

 $^{^{(3)}}$ IsD ≤ 21 A, di/dt ≤ 900 A/µs, VDD = 400 V, VDS(peak) < V(BR)DSS.

 $^{^{(4)}}$ V_{DS} ≤ 480 V.

 $^{^{(1)}}$ When mounted on a 1-inch² FR-4, 2oz Cu board.

 $^{^{(1)}}$ Pulse width limited by T_{jmax} .

 $^{^{(2)}}$ starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

Electrical characteristics STL28N60DM2

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	7	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	μΑ
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _{case} = 125 °C			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10.5 A		0.155	0.175	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1500	ı	
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	70	ı	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	1.6	ı	ρ.
Coss.eq ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ to } 480 \text{ V}$	ı	134	ı	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4.6	-	Ω
Q_g	Total gate charge	V _{DD} = 480 V, I _D = 21 A,	-	34	ı	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Gate charge test circuit")	-	8	-	nC
Q _{gd}	Gate-drain charge		-	18.5	-	

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 10.5 A	-	16	-	
tr	Voltage rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Switching times test	ı	7.3	1	
t _{d(off)}	Turn-off delay time	circuit for resistive load" and Figure 19: "Switching time waveform")	-	53	-	ns
t _f	Current fall time		-	9.3	-	

4

 $^{^{(1)}}$ Coss.eq is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		21	Α
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		84	Α
V _{SD} ⁽³⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 21 A	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/μs, V _{DD} = 100 V (see Figure 16: " Test circuit for inductive load switching and diode recovery times")	-	140		ns
Qrr	Reverse recovery charge		-	0.5		μC
I _{RRM}	Reverse recovery current		-	7.4		Α
t _{rr}	Reverse recovery time	I _{SD} = 21 A, di/dt = 100 A/µs, V _{DD} = 100 V, T _J = 150 °C (see Figure 16: " Test circuit for inductive load switching and diode recovery times")	-	309		ns
Qrr	Reverse recovery charge		-	2.6		μC
I _{RRM}	Reverse recovery current		-	16.8		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1$ mA, $I_D = 0$ A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

 $^{^{\}left(1\right)}$ The value is rated according to $R_{thj\text{-}case}$ and limited by package.

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

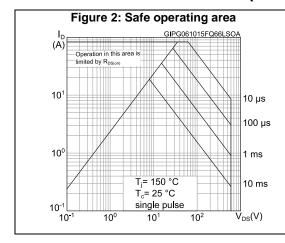
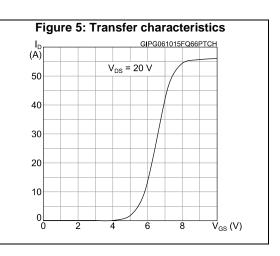
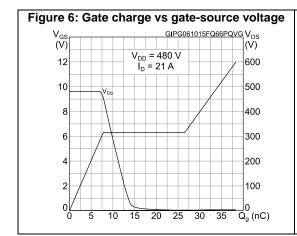
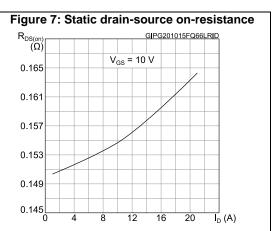
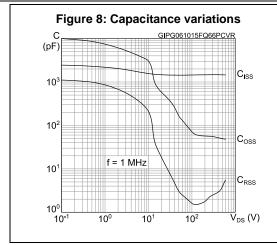
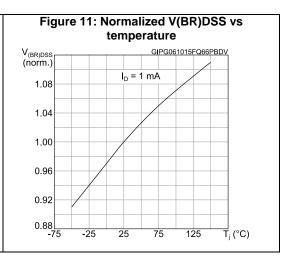
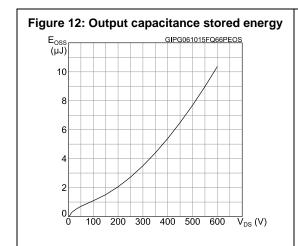
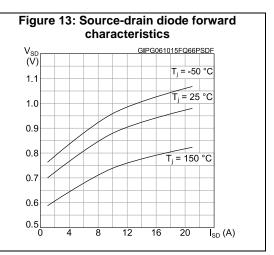





Figure 3: Thermal impedance K $\delta = 0.5$ $\delta = 0.5$ $\delta = 0.02$ $\delta = 0.01$ $\delta = 0.02$ $\delta = 0.05$






DocID026786 Rev 2


6/15

STL28N60DM2 Electrical characteristics

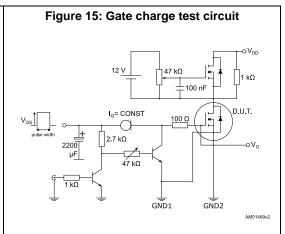
Test circuits STL28N60DM2

3 Test circuits

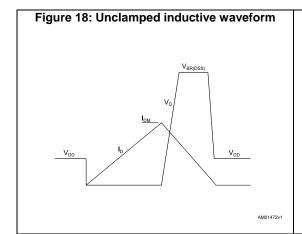
Figure 14: Switching times test circuit for resistive load

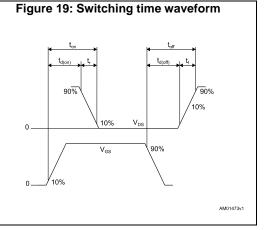
RL

2200


µF


VD


QND1

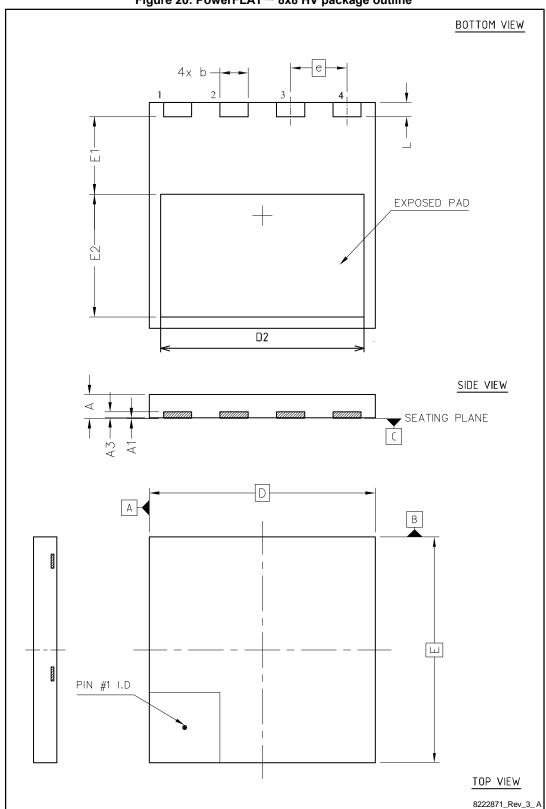

(driver signal)

AM15855v1

577

8/15 DocID026786 Rev 2

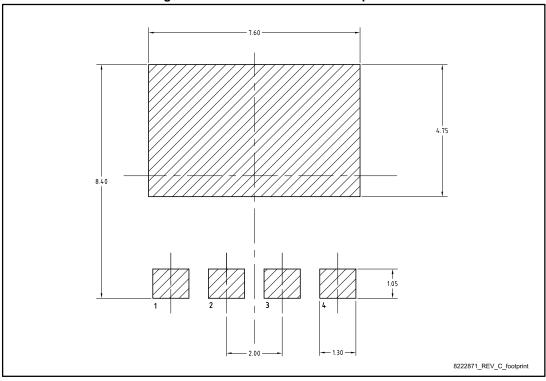
4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

Package information STL28N60DM2

4.1 PowerFLAT 8x8 HV package information

Figure 20: PowerFLAT™ 8x8 HV package outline



577

Table 10: PowerFLAT™ 8x8 HV mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	0.75	0.85	0.95
A1	0.00		0.05
А3	0.10	0.20	0.30
b	0.90	1.00	1.10
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	7.10	7.20	7.30
E1	2.65	2.75	2.85
E2	4.25	4.35	4.45
е		2.00	
L	0.40	0.50	0.60

Figure 21: PowerFLAT™ 8x8 HV footprint

All dimensions are in millimeters.

Package information STL28N60DM2

4.2 PowerFLAT 8x8 HV packing information

Figure 22: PowerFLAT™ 8x8 HV tape

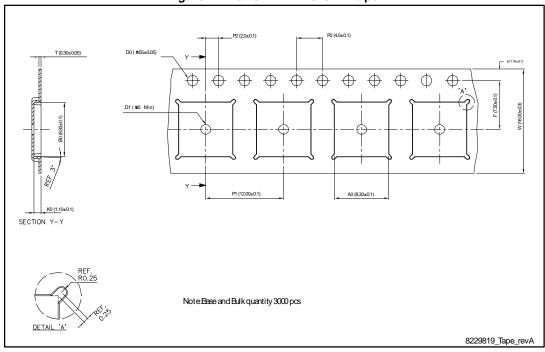
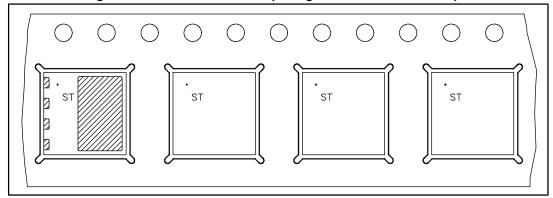



Figure 23: PowerFLAT™ 8x8 HV package orientation in carrier tape

STL28N60DM2 Package information

8229819_Feel_revA

Figure 24: PowerFLAT™ 8x8 HV reel

Revision history STL28N60DM2

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
08-Aug-2014	1	First release.
16-Oct-2015	2	Text and formatting changes throughout document Datasheet status changed from preliminary to production data In section Electrical ratings: - added table Avalanche characteristics In section Electrical characteristics: - renamed table Static (was On /off states) Added section Electrical characteristics (curves) Updated section Test circuits Updated and renamed section Package information (was Package mechanical data)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

