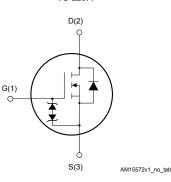
STF20N60M2-EP



Datasheet

N-channel 600 V, 0.230 Ω typ., 13 A, MDmesh[™] M2 EP Power MOSFET in a TO-220FP package

TO-220FP

Features

I _D
13 A

Extremely low gate charge

Excellent output capacitance (COSS) profile

Very low turn-off switching losses

100% avalanche tested

• Zener-protected

Applications

- Switching applications
- Tailored for very high frequency converters (f > 150 kHz)

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 enhanced performance (EP) technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance, optimized switching characteristics with very low turn-off switching losses, rendering it suitable for the most demanding very high frequency converters.

Product status		
STF20N60M2-EP		
Product	summary	
Order code	STF20N60M2-EP	
Marking	20N60M2EP	
Package	TO-220FP	
Packing	Tube	

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
V _{GS}	Transient gate-source voltage ($t_p \le 10 \text{ ns}$)	±35	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	13	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	8	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	52	Α
P _{TOT}	Total dissipation at T_C = 25 °C	25	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_c = 25 °C)	2.5	kV
T _{stg}	Storage temperature range	55 to 150	°C
Тј	Operating junction temperature range	-55 to 150	C

Table 1. Absolute maximum ratings

1. Limited by maximum junction temperature

2. Pulse width limited by safe operating area.

3. $I_{SD} \leq 13 \text{ A}, \text{ di/dt} \leq 400 \text{ A/}\mu\text{s}, V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 \text{ V}$

4. $V_{DS} \leq 480 V$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	2.7	А
E _{AS}	Single pulse avalanche energy (starting T _j = 25 °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	138	mJ

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
la ee	Zero gate voltage	V_{GS} = 0 V, V_{DS} = 600 V			1	μA
USS	Drain current	V_{GS} = 0 V, V_{DS} = 600 V, T_{C} = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μ A	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 6.5 A		0.230	0.278	Ω

Table 4. On/off states

1. Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	787	-	
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	50	-	pF
C _{rss}	Reverse transfer capacitance		-	1.2	-	
Coss eq. (1)	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	89	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	5.9	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 13 A, V _{GS} = 0 to 10 V	-	22	-	
Q _{gs}	Gate-source charge	e (see Figure 15. Test circuit for gate		3.5	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	10.5	-	

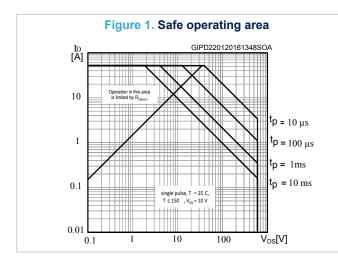
1. $C_{oss eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

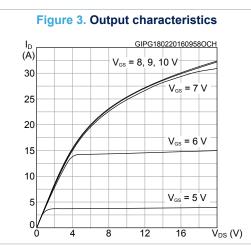
Table 6. Switching energy

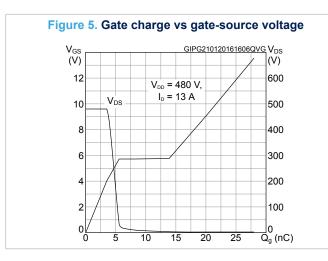
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
F	Turn-off energy (from 90% V _{GS}	V _{DD} = 400 V, I _D = 2 A, R _G = 4.7 Ω, V _{GS} = 10 V	-	7.2	-	μJ
E _{off}	to 0% I _D)	V_{DD} = 400 V, I _D = 5 A, R _G = 4.7 Ω, V _{GS} = 10 V	-	20.4	-	μJ

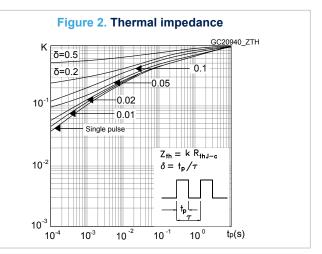
Table 7. Switching times

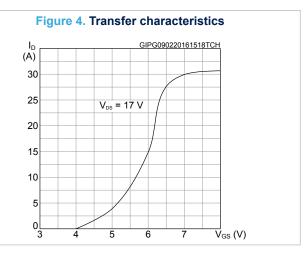
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	10.5	-	ns
tr	Rise time	V_{DD} = 300 V, I_D = 6.5 A, R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 14. Test circuit	-	5.2	-	ns
t _{d(off)}	Turn-off delay time	for resistive load switching times and Figure 19. Switching time waveform)	-	41	-	ns
t _f	Fall time		-	8	-	ns

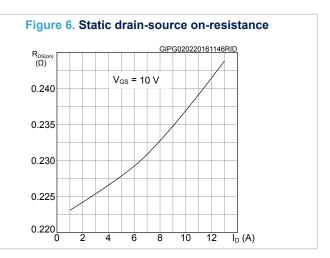

Table 8. Source-drain diode

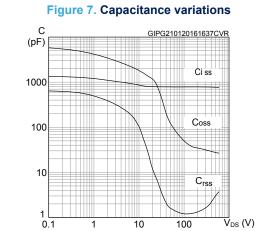

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		13	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		52	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 13 A	-		1.6	V
t _{rr}	Reverse recovery time	I_{SD} = 13 A, di/dt = 100 A/µs, V_{DD} = 60 V (see Figure 16. Test circuit for inductive load switching and diode recovery		230		ns
Q _{rr}	Reverse recovery charge			2.3		μC
I _{RRM}	Reverse recovery current	times)	-	20		А
t _{rr}	Reverse recovery time	I_{SD} = 13 A, di/dt = 100 A/µs, V _{DD} = 60 V,	-	287		ns
Q _{rr}	Reverse recovery charge	T _j = 150 °C (see Figure 16. Test circuit for inductive load switching and diode	-	2.9		μC
I _{RRM}	Reverse recovery current	recovery times)	-	20.2		А

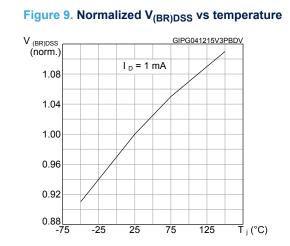

1. Pulse width is limited by safe operating area


2. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%


2.1 Electrical characteristics (curves)







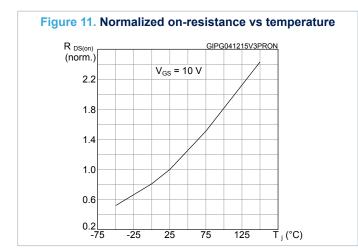


Figure 8. Output capacitance stored energy

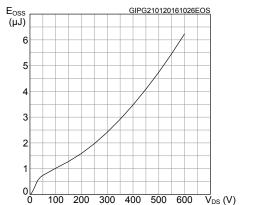
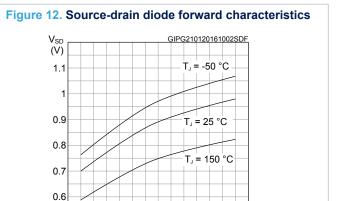



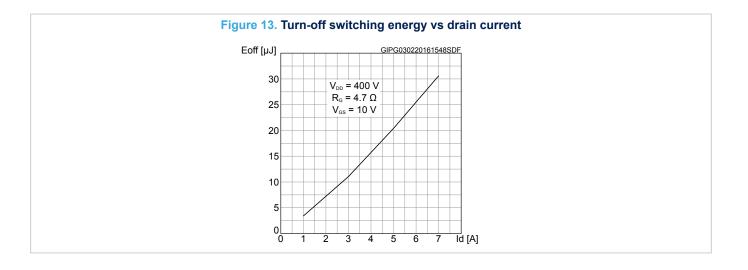
Figure 10. Normalized gate threshold voltage vs temperature

6 8

10

12

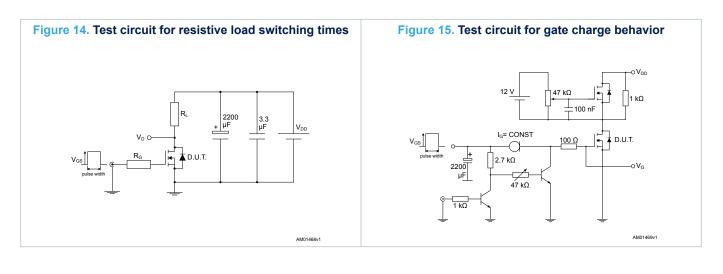
T_{SD} (A)

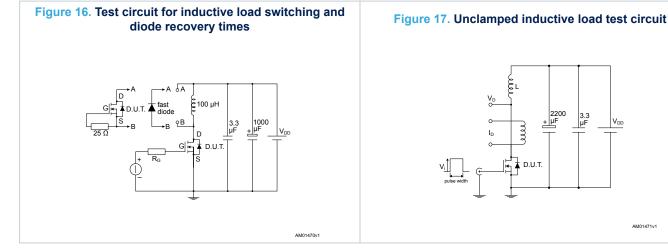

0.5

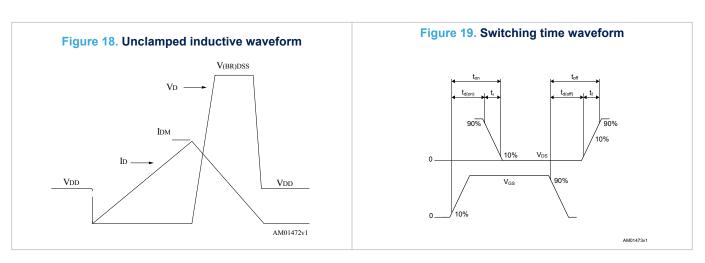
2

4

2200 + µF

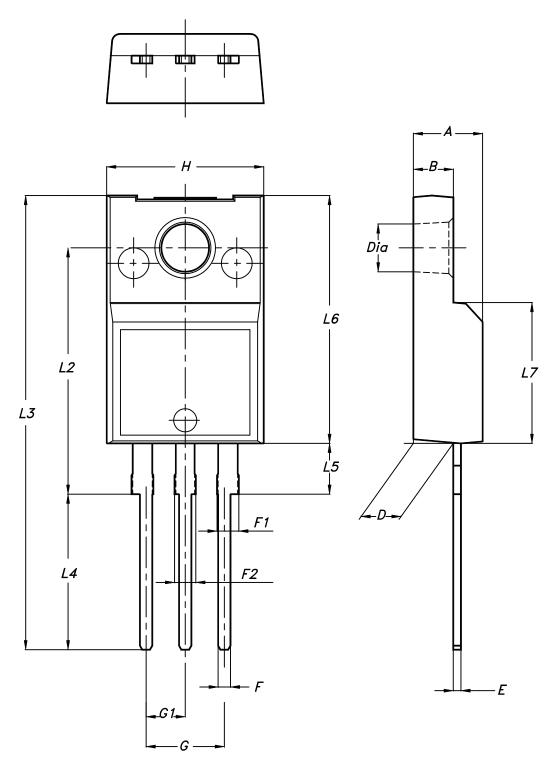

ليينا


3.3 µF


 V_{DD}

AM01471v1

3 **Test circuits**


4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 TO-220FP package information

57

Figure 20. TO-220FP package outline

7012510_Rev_12_B

Dim.		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 9. TO-220FP package mechanical data

Revision history

Table 10. Document revision history

Date	Revision	Changes
29-Feb-2016	1	First release.
18-Aug-2016	2	Modified: Table 2: "Absolute maximum ratings"
10 / Kig 2010	-	Minor text changes
		Removed maturity status indication from cover page. The document status is production data.
02-Mar-2018	3	Updated Table 1. Absolute maximum ratings, Table 4. On/off states and Table 5. Dynamic.
		Updated Figure 1. Safe operating area, Figure 3. Output characteristics, Figure 4. Transfer characteristics and Figure 5. Gate charge vs gate-source voltage.
		Minor text changes.
		Modified Table 1. Absolute maximum ratings.
04-Jun-2018	4	Modified Figure 1. Safe operating area .
04-Juli-2016	4	Modified Table 8. Source-drain diode.
		Minor text changes.

Contents

1	Electrical ratings		2
2	Electrical characteristics		3
	2.1	Electrical characteristics (curves)	5
3	Test o	circuits	8
4	Package information		9
	4.1	TO-220FP package information	9
Revi	Revision history		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved