

# **STD4N80K5, STF4N80K5, STP4N80K5, STU4N80K5**

N-channel 800 V, 2.1 Ω typ., 3 A MDmesh™ K5 Power MOSFETs in DPAK, TO-220FP, TO-220 and IPAK packages

Datasheet - production data

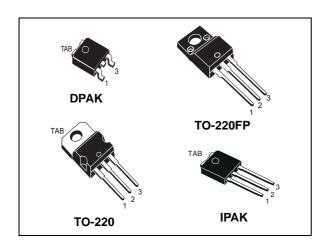
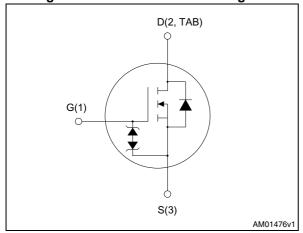




Figure 1. Internal schematic diagram



#### **Features**

| Order code | V <sub>DS</sub> | R <sub>DS(on)</sub> max. | I <sub>D</sub> | P <sub>TOT</sub> |
|------------|-----------------|--------------------------|----------------|------------------|
| STD4N80K5  |                 |                          |                | 60 W             |
| STF4N80K5  | 0001/           | 0.5.0                    | 3 A            | 20 W             |
| STP4N80K5  | 800 V           | 2.5 Ω                    |                | CO 14/           |
| STU4N80K5  |                 |                          |                | 60 W             |

- Industry's lowest R<sub>DS(on)</sub> x area
- Industry's best figure of merit (FoM)
- Ultra low gate charge
- 100% avalanche tested
- · Zener-protected

#### **Applications**

· Switching applications

#### **Description**

These very high voltage N-channel Power MOSFETs are designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1. Device summary

| Order code | Marking | Packages | Packaging     |
|------------|---------|----------|---------------|
| STD4N80K5  |         | DPAK     | Tape and reel |
| STF4N80K5  | 4N80K5  | TO-220FP |               |
| STP4N80K5  | 4NOUN3  | TO-220   | Tube          |
| STU4N80K5  |         | IPAK     |               |

February 2015 DocID025105 Rev 3 1/23

### **Contents**

| 1 | Electrical ratings                      | 3  |
|---|-----------------------------------------|----|
| 2 | Electrical characteristics              | 4  |
|   | 2.1 Electrical characteristics (curves) | 6  |
| 3 | Test circuits                           | 9  |
| 4 | Package information                     | 0  |
|   | 4.1 DPAK(TO-252), package information   | 1  |
|   | 4.2 TO-220FP, package information       | 4  |
|   | 4.3 TO-220, package information         | 6  |
|   | 4.4 IPAK(TO-251), package information   | 8  |
| 5 | Packaging mechanical data               | ¿O |
| 6 | Revision history                        | 22 |



# 1 Electrical ratings

Table 2. Absolute maximum ratings

|                                |                                                                                                                 | Value         |                    |        |      |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------------------|--------|------|
| Symbol                         | Parameter                                                                                                       | DPAK,<br>IPAK | TO-220FP           | TO-220 | Unit |
| V <sub>DS</sub>                | Drain-source voltage                                                                                            |               | 800                |        | V    |
| V <sub>GS</sub>                | Gate- source voltage                                                                                            |               | ±30                |        | V    |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 25 °C                                                            | 3             | 3 (1)              | 3      | Α    |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 100 °C                                                           | 1.7           | 1.7 <sup>(1)</sup> | 1.7    | Α    |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                                                                                          | 12            | 12 <sup>(1)</sup>  | 12     | Α    |
| P <sub>TOT</sub>               | Total dissipation at T <sub>C</sub> = 25 °C                                                                     | 60            | 20                 | 60     | W    |
| I <sub>AR</sub>                | Avalanche current, repetitive or not-repetitive (pulse width limited by $T_J$ max)                              | 1             |                    |        | А    |
| E <sub>AS</sub>                | Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$ , $V_{DD} = 50$ V)                        | 74.5          |                    | mJ     |      |
| dv/dt <sup>(3)</sup>           | Peak diode recovery voltage slope                                                                               |               | 4.5                |        | V/ns |
| dv/dt <sup>(4)</sup>           | MOSFET dv/dt ruggedness                                                                                         |               | 50                 |        | V/ns |
| V <sub>ISO</sub>               | Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T <sub>C</sub> = 25 °C) | 2500          |                    | V      |      |
| TJ                             | Operating junction temperature                                                                                  | -55 to 150    |                    | °C     |      |
| T <sub>stg</sub>               | Storage temperature                                                                                             |               |                    | °C     |      |

<sup>1.</sup> Limited by maximum junction temperature

Table 3. Thermal data

| Symbol                                                       | ymbol Parameter                                                         |      | TO-220FP | TO-220 | Unit |
|--------------------------------------------------------------|-------------------------------------------------------------------------|------|----------|--------|------|
| R <sub>thj-case</sub>                                        | Thermal resistance junction-case max                                    | 2.08 | 6.25     | 2.08   | °C/W |
| R <sub>thj-amb</sub> Thermal resistance junction-ambient max |                                                                         |      | 62.5     |        | °C/W |
| R <sub>thj-pcb</sub> <sup>(1)</sup>                          | R <sub>thj-pcb</sub> <sup>(1)</sup> Thermal resistance junction-pcb max |      |          |        | °C/W |

<sup>1.</sup> When mounted on 1inch² FR-4 board, 2 oz Cu



<sup>2.</sup> Pulse width limited by safe operating area

<sup>3.</sup>  $I_{SD} < 3 \text{ A, di/dt } < 100 \text{ A/}\mu\text{s, } V_{DS(peak)} \le V_{(BR)DSS}$ 

<sup>4.</sup>  $V_{DS} \le 640 \text{ V}$ 

#### 2 Electrical characteristics

(Tcase =25 °C unless otherwise specified)

Table 4. On /off states

| Symbol               | Parameter                                             | Test conditions                                 | Min. | Тур. | Max. | Unit |
|----------------------|-------------------------------------------------------|-------------------------------------------------|------|------|------|------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage                        | $I_D = 1 \text{ mA}, V_{GS} = 0$                | 800  |      |      | V    |
| 1                    | Zero gate voltage drain current (V <sub>GS</sub> = 0) | V <sub>DS</sub> = 800 V                         |      |      | 1    | μΑ   |
| DSS                  |                                                       | V <sub>DS</sub> = 800 V, T <sub>C</sub> =125 °C |      |      | 50   | μΑ   |
| I <sub>GSS</sub>     | Gate-body leakage current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ± 20 V                        |      |      | ±10  | μA   |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                | $V_{DS} = V_{GS}, I_{D} = 100 \mu A$            | 3    | 4    | 5    | V    |
| R <sub>DS(on)</sub>  | Static drain-source on-<br>resistance                 | $V_{GS} = 10 \text{ V}, I_D = 1.5 \text{ A}$    |      | 2.1  | 2.5  | Ω    |

Table 5. Dynamic

| Symbol                            | Parameter                             | Test conditions                                   | Min. | Тур. | Max. | Unit |
|-----------------------------------|---------------------------------------|---------------------------------------------------|------|------|------|------|
| C <sub>iss</sub>                  | Input capacitance                     |                                                   | -    | 175  | -    | pF   |
| C <sub>oss</sub>                  | Output capacitance                    | V <sub>DS</sub> = 100 V, f = 1 MHz,               | -    | 18   | -    | pF   |
| C <sub>rss</sub>                  | Reverse transfer capacitance          | $V_{GS} = 0$                                      | -    | 0.5  | -    | pF   |
| C <sub>o(tr)</sub> <sup>(1)</sup> | Equivalent capacitance time related   | V <sub>DS</sub> = 0 to 640 V, V <sub>GS</sub> = 0 | -    | 26   | -    | pF   |
| C <sub>o(er)</sub> <sup>(2)</sup> | Equivalent capacitance energy related | V <sub>DS</sub> = 0 to 640 V, V <sub>GS</sub> = 0 | -    | 11   | -    | pF   |
| Rg                                | Gate input resistance                 | f=1 MHz, I <sub>D</sub> = 0                       | -    | 15   | -    | Ω    |
| Qg                                | Total gate charge                     | V <sub>DD</sub> = 640 V, I <sub>D</sub> = 3 A,    | -    | 10.5 | -    | nC   |
| Q <sub>gs</sub>                   | Gate-source charge                    | V <sub>GS</sub> = 10 V                            | -    | 2    | -    | nC   |
| Q <sub>gd</sub>                   | Gate-drain charge                     | (see Figure 19)                                   | -    | 7.5  | -    | nC   |

<sup>1.</sup> Time related is defined as a constant equivalent capacitance giving the same charging time as  $C_{oss}$  when  $V_{DS}$  increases from 0 to 80%  $V_{DSS}$ 

57/

<sup>2.</sup> Energy related is defined as a constant equivalent capacitance giving the same stored energy as  $C_{oss}$  when  $V_{DS}$  increases from 0 to 80%  $V_{DSS}$ 

Table 6. Switching times

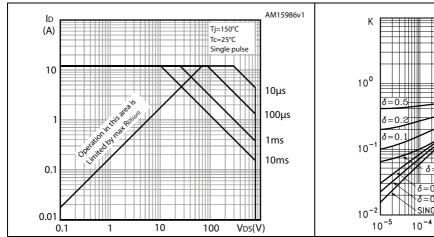
| Symbol              | Parameter           | Test conditions                                                                             | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|---------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  |                                                                                             | -    | 16.5 | -    | ns   |
| t <sub>r</sub>      | Rise time           | $V_{DD} = 400 \text{ V}, I_D = 1.5 \text{ A},$<br>$R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ | -    | 15   | -    | ns   |
| t <sub>d(off)</sub> | Turn-off-delay time | (see Figure 18)                                                                             | -    | 36   | -    | ns   |
| t <sub>f</sub>      | Fall time           |                                                                                             | -    | 21   | -    | ns   |

Table 7. Source drain diode

| Symbol                          | Parameter                     | Test conditions                                | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                | -    |      | 3    | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                |      |      | 12   | Α    |
| V <sub>SD</sub> (2)             | Forward on voltage            | $I_{SD} = 3 A, V_{GS} = 0$                     | -    |      | 1.5  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 3 A, di/dt = 100 A/μs        | -    | 242  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | V <sub>DD</sub> = 60 V                         | -    | 1.42 |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 20)                                | -    | 12   |      | Α    |
| t <sub>rr</sub>                 | Reverse recovery time         | I <sub>SD</sub> = 3 A, di/dt = 100 A/μs        | -    | 373  |      | ns   |
| Q <sub>rr</sub>                 | Reverse recovery charge       | V <sub>DD</sub> = 60 V T <sub>J</sub> = 150 °C | -    | 1.98 |      | μC   |
| I <sub>RRM</sub>                | Reverse recovery current      | (see Figure 20)                                | -    | 10.5 |      | Α    |

- 1. Pulse width limited by safe operating area
- 2. Pulsed: pulse duration =  $300 \mu s$ , duty cycle 1.5%

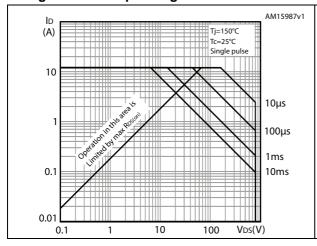
Table 8. Gate-source Zener diode


| Symbol               | Parameter                     | Test conditions               | Min. | Тур. | Max. | Unit |
|----------------------|-------------------------------|-------------------------------|------|------|------|------|
| V <sub>(BR)GSO</sub> | Gate-source breakdown voltage | $I_{GS}$ = ± 1 mA, $I_{D}$ =0 | 30   |      | -    | ٧    |

The built-in back-to-back Zener diodes have been specifically designed to enhance the ESD capability of the device. The Zener voltage is appropriate for efficient and cost-effective intervention to protect the device integrity. These integrated Zener diodes thus eliminate the need for external components.

#### 2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for DPAK and IPAK


Figure 3. Thermal impedance for DPAK and IPAK



K 6c34560  $\delta = 0.5$   $\delta = 0.2$   $\delta = 0.05$   $\delta = 0.02$   $\delta = 0.05$   $\delta = 0.02$   $\delta = 0.01$   $\delta = 0.02$   $\delta =$ 

Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP



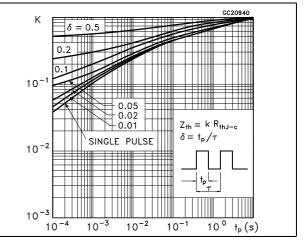
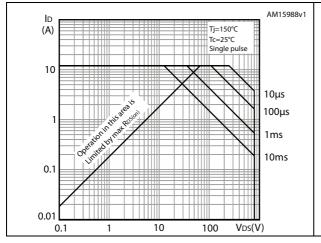
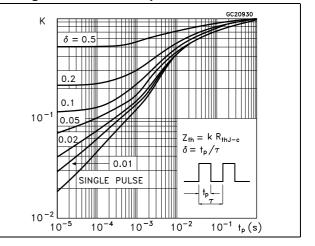
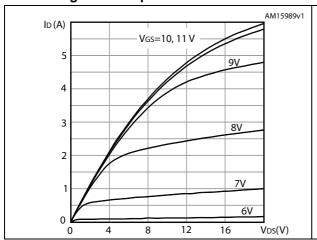





Figure 6. Safe operating area for TO-220

Figure 7. Thermal impedance for TO-220






DocID025105 Rev 3

Figure 8. Output characteristics

Figure 9. Transfer characteristics



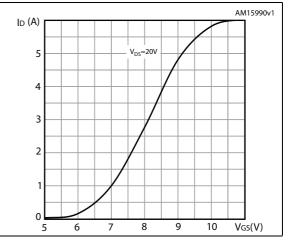
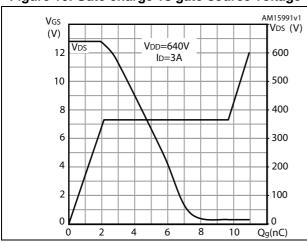




Figure 10. Gate charge vs gate-source voltage

Figure 11. Static drain-source on-resistance



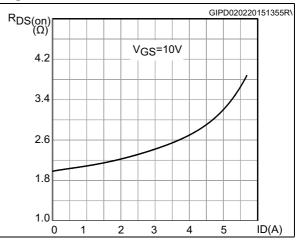
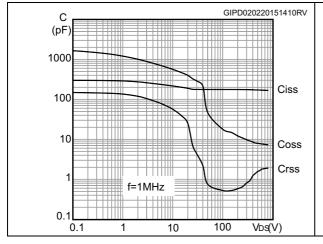




Figure 12. Capacitance variations

Figure 13. Normalized gate threshold voltage vs temperature



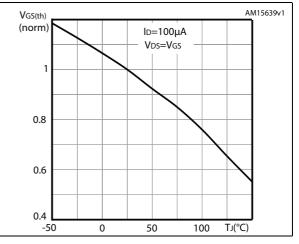



Figure 14. Normalized on-resistance vs temperature

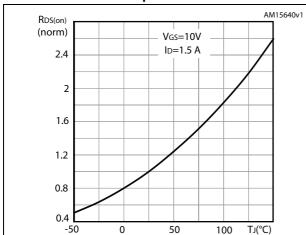



Figure 15. Source-drain diode forward characteristics

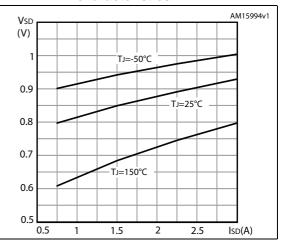
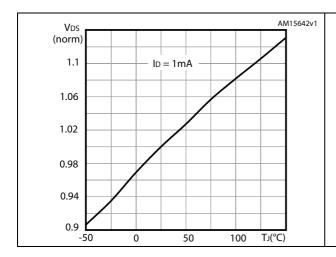
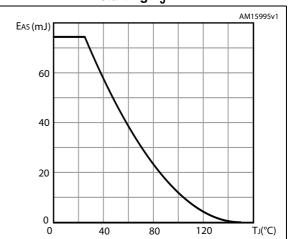





Figure 16. Normalized  $V_{DS}$  vs temperature

Figure 17. Maximum avalanche energy vs. starting  $T_J$ 





577

#### 3 Test circuits

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

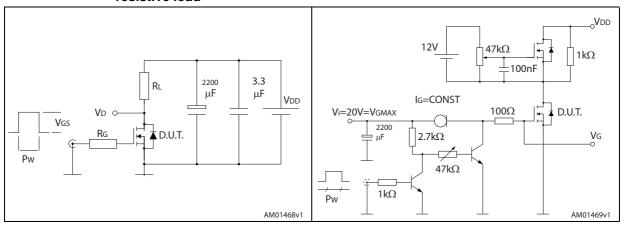



Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive load test circuit

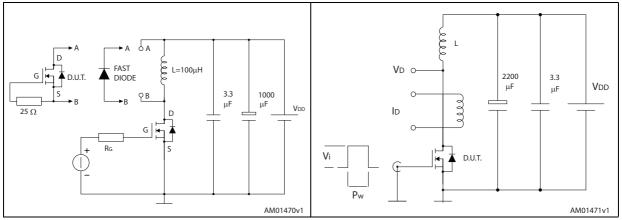
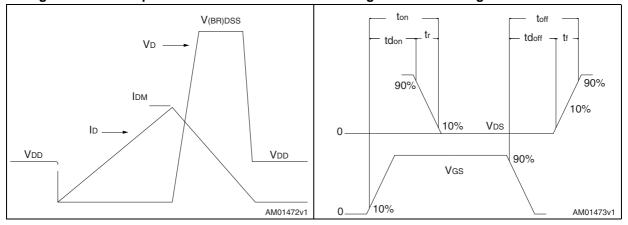




Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform





# 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK<sup>®</sup> is an ST trademark.

577

### 4.1 DPAK(TO-252), package information

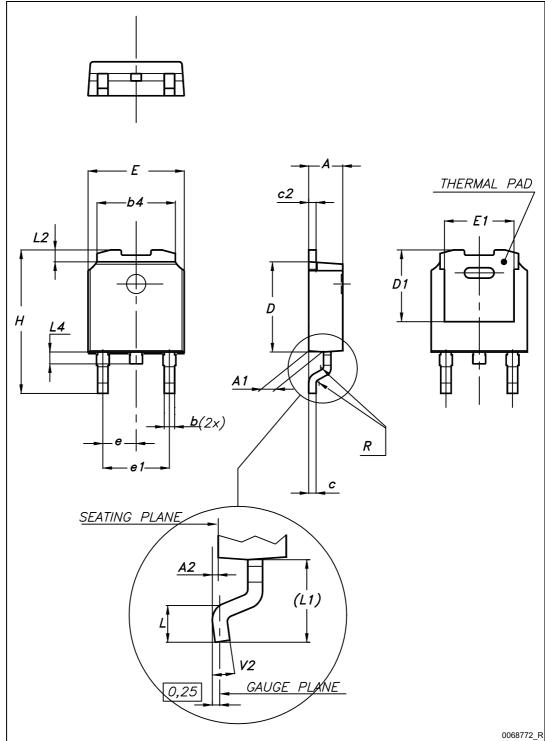



Figure 24. DPAK (TO-252) type A outline

5//

Figure 25. DPAK (TO-252) mechanical data

| Dim  |      | mm   |       |
|------|------|------|-------|
| Dim. | Min. | Тур. | Max.  |
| А    | 2.20 |      | 2.40  |
| A1   | 0.90 |      | 1.10  |
| A2   | 0.03 |      | 0.23  |
| b    | 0.64 |      | 0.90  |
| b4   | 5.20 |      | 5.40  |
| С    | 0.45 |      | 0.60  |
| c2   | 0.48 |      | 0.60  |
| D    | 6.00 |      | 6.20  |
| D1   |      | 5.10 |       |
| Е    | 6.40 |      | 6.60  |
| E1   |      | 4.70 |       |
| е    |      | 2.28 |       |
| e1   | 4.40 |      | 4.60  |
| Н    | 9.35 |      | 10.10 |
| L    | 1.00 |      | 1.50  |
| L1   |      | 2.80 |       |
| L2   |      | 0.80 |       |
| L4   | 0.60 |      | 1.00  |
| R    |      | 0.20 |       |
| V2   | 0°   |      | 8°    |

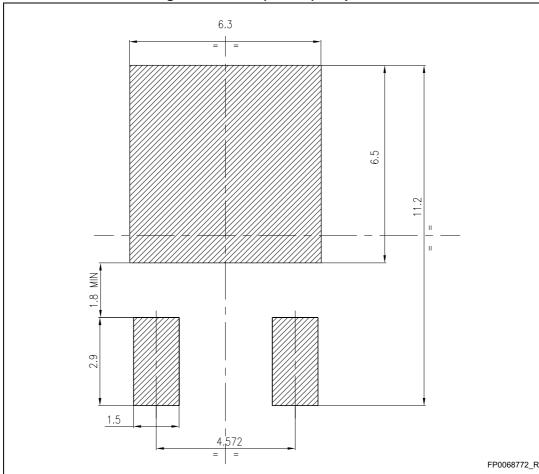



Figure 26. DPAK (TO-252) footprint (a)

a. All dimensions are in millimeters

# 4.2 TO-220FP, package information

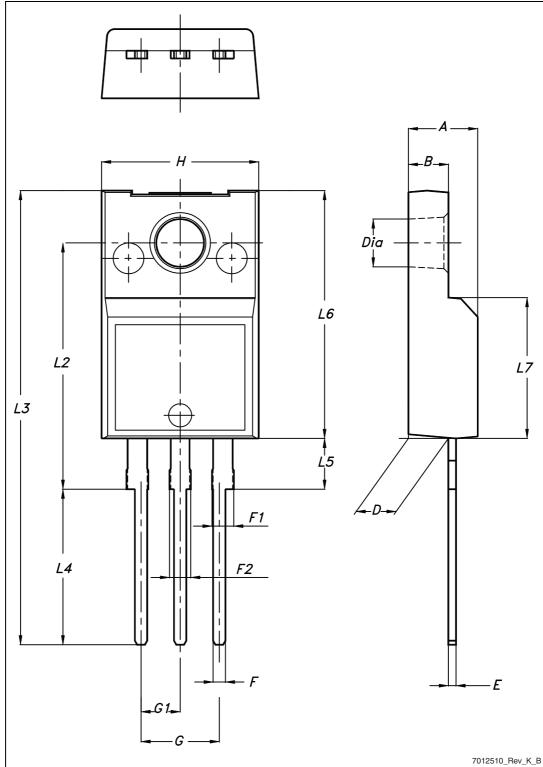



Figure 27. TO-220FP outline

57

Table 9. TO-220FP mechanical data

|      |      | mm   |      |
|------|------|------|------|
| Dim. | Min. | Тур. | Max. |
| А    | 4.4  |      | 4.6  |
| В    | 2.5  |      | 2.7  |
| D    | 2.5  |      | 2.75 |
| Е    | 0.45 |      | 0.7  |
| F    | 0.75 |      | 1    |
| F1   | 1.15 |      | 1.70 |
| F2   | 1.15 |      | 1.70 |
| G    | 4.95 |      | 5.2  |
| G1   | 2.4  |      | 2.7  |
| Н    | 10   |      | 10.4 |
| L2   |      | 16   |      |
| L3   | 28.6 |      | 30.6 |
| L4   | 9.8  |      | 10.6 |
| L5   | 2.9  |      | 3.6  |
| L6   | 15.9 |      | 16.4 |
| L7   | 9    |      | 9.3  |
| Dia  | 3    |      | 3.2  |



#### TO-220, package information 4.3

øΡ H1 D1 L20 L30 <u>L</u>1 b1(X3) b (X3) \_e1\_\_

Figure 28. TO-220 type A outline

0015988\_typeA\_Rev\_T

Table 10. TO-220 type A mechanical data

| Dim. | mm    |       |       |  |
|------|-------|-------|-------|--|
|      | Min.  | Тур.  | Max.  |  |
| А    | 4.40  |       | 4.60  |  |
| b    | 0.61  |       | 0.88  |  |
| b1   | 1.14  |       | 1.70  |  |
| С    | 0.48  |       | 0.70  |  |
| D    | 15.25 |       | 15.75 |  |
| D1   |       | 1.27  |       |  |
| E    | 10    |       | 10.40 |  |
| е    | 2.40  |       | 2.70  |  |
| e1   | 4.95  |       | 5.15  |  |
| F    | 1.23  |       | 1.32  |  |
| H1   | 6.20  |       | 6.60  |  |
| J1   | 2.40  |       | 2.72  |  |
| L    | 13    |       | 14    |  |
| L1   | 3.50  |       | 3.93  |  |
| L20  |       | 16.40 |       |  |
| L30  |       | 28.90 |       |  |
| ØP   | 3.75  |       | 3.85  |  |
| Q    | 2.65  |       | 2.95  |  |

### 4.4 IPAK(TO-251), package information

Figure 29. IPAK (TO-251) type A outline

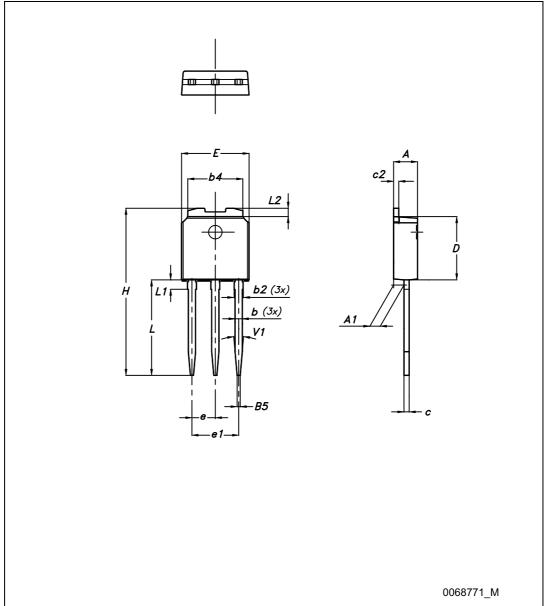



Table 11. IPAK (TO-251) type A mechanical data

| DIM | mm.  |       |      |  |
|-----|------|-------|------|--|
| DIW | min. | typ.  | max. |  |
| Α   | 2.20 |       | 2.40 |  |
| A1  | 0.90 |       | 1.10 |  |
| b   | 0.64 |       | 0.90 |  |
| b2  |      |       | 0.95 |  |
| b4  | 5.20 |       | 5.40 |  |
| B5  |      | 0.30  |      |  |
| С   | 0.45 |       | 0.60 |  |
| c2  | 0.48 |       | 0.60 |  |
| D   | 6.00 |       | 6.20 |  |
| E   | 6.40 |       | 6.60 |  |
| е   |      | 2.28  |      |  |
| e1  | 4.40 |       | 4.60 |  |
| Н   |      | 16.10 |      |  |
| L   | 9.00 |       | 9.40 |  |
| L1  | 0.80 |       | 1.20 |  |
| L2  |      | 0.80  | 1.00 |  |
| V1  |      | 10°   |      |  |

# 5 Packaging mechanical data

Table 12. DPAK (TO-252) tape and reel mechanical data

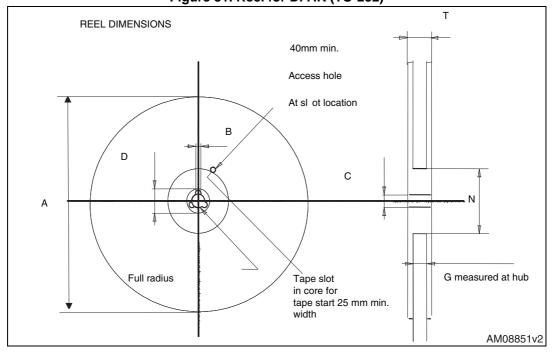
|      | Таре | 217 (10 202) |        | Reel      |      |  |
|------|------|--------------|--------|-----------|------|--|
| Dim. | n    | nm           | Dim.   | mm        |      |  |
|      | Min. | Max.         | Dilli. | Min.      | Max. |  |
| Α0   | 6.8  | 7            | А      |           | 330  |  |
| В0   | 10.4 | 10.6         | В      | 1.5       |      |  |
| B1   |      | 12.1         | С      | 12.8      | 13.2 |  |
| D    | 1.5  | 1.6          | D      | 20.2      |      |  |
| D1   | 1.5  |              | G      | 16.4      | 18.4 |  |
| Е    | 1.65 | 1.85         | N      | 50        |      |  |
| F    | 7.4  | 7.6          | Т      |           | 22.4 |  |
| K0   | 2.55 | 2.75         |        |           |      |  |
| P0   | 3.9  | 4.1          |        | Base qty. | 2500 |  |
| P1   | 7.9  | 8.1          |        | Bulk qty. | 2500 |  |
| P2   | 1.9  | 2.1          |        |           |      |  |
| R    | 40   |              |        |           |      |  |
| Т    | 0.25 | 0.35         |        |           |      |  |
| W    | 15.7 | 16.3         |        |           |      |  |

7/

Top cover tolerance on tape +/- 0.2 mm

Top cover tolerance on tape +/- 0.2 mm

For machine ref. only including draft and radii concentric around B0


User direction of feed

Liser direction of feed

AM08852v1

Figure 30. Tape for DPAK (TO-252)





5

DocID025105 Rev 3

# 6 Revision history

**Table 13. Document revision history** 

| Date        | Revision | Changes                                                                                                                                                                                                                                                                          |
|-------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09-Aug-2013 | 1        | First release                                                                                                                                                                                                                                                                    |
| 13-Dec-2013 | 2        | <ul><li>Added: IPAK package</li><li>Added: <i>Table 11</i> and <i>Figure 29</i></li><li>Minor text changes</li></ul>                                                                                                                                                             |
| 04-Feb-2015 | 3        | <ul> <li>Updated title and description in cover page.</li> <li>Updated Table 2.: Absolute maximum ratings, Table 5.: Dynamic and Table 7.: Source drain diode.</li> <li>Updated 4: Package information and 5: Packaging mechanical data.</li> <li>Minor text changes.</li> </ul> |



#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved



DocID025105 Rev 3