

STD17NF25, STF17NF25, STP17NF25

N-channel 250 V 0.14 Ωtyp., 17 A low gate charge STripFET™ II Power MOSFET in DPAK, TO-220FP and TO-220 packages

Datasheet — production data

Features

Order codes	V _{DSS}	R _{DS(on)} max.	I _D	P _{TOT}
STD17NF25	250V	< 0.165Ω	17A	90W
STF17NF25	250V	< 0.165Ω	17A	25W
STP17NF25	250V	< 0.165Ω	17A	90W

- Low gate charge
- 100% avalanche tested
- Exceptional dv/dt capability

Application

■ Switching applications

Description

These Power MOSFETs have been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the devices suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.

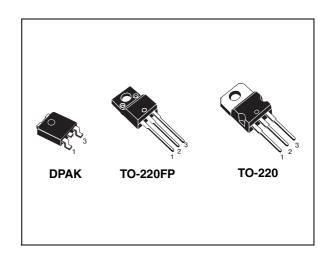


Figure 1. Internal schematic diagram

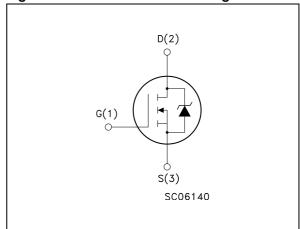


Table 1. Device summary

Order codes	Marking	Package	Packaging
STD17NF25		DPAK	Tape and reel
STF17NF25	17NF25	TO-220FP	Tube
STP17NF25		TO-220	Tube

November 2012 Doc ID 13168 Rev 2 1/19

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuits	9
4	Package mechanical data	. 10
5	Packaging mechanical data	. 16
6	Revision history	. 18

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Valu	Unit	
Symbol	Parameter	TO-220, DPAK	TO-220FP	Onit
V _{DS}	Drain-source voltage	25	0	V
V _{GS}	Gate-source voltage	±2	0	٧
I _D	Drain current (continuous) at T _C = 25 °C	$t T_C = 25 ^{\circ}C$ 17 $17^{(1)}$		Α
I _D	Drain current (continuous) at T _C =100 °C	10	10 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	68	68 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	90	25	W
	Derating factor	0.72	0.2	W/°C
dv/dt ⁽³⁾	Peak diode recovery voltage slope	10		V/ns
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 150		°C

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \le 17 \text{ A}$, di/dt $\le 200 \text{ A/}\mu\text{s}$, $V_{DD} \le 80\%V_{(BR)DSS}$

Table 3. Thermal data

Symbol	I Parameter		TO-220FP	TO-220	Unit
R _{thj-case}	Thermal resistance junction-case max	1.38	5	1.38	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50 ⁽¹⁾	62.5	62.5	°C/W

^{1.} When mounted on 1inch² FR-4, 2 Oz copper board

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by Tjmax)	17	Α
E _{AS}	Single pulse avalanche energy (starting Tj=25 °C, I _D =I _{AR} , V _{DD} =50 V)	100	mJ

2 Electrical characteristics

(T_{CASE} =25°C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1$ mA, $V_{GS} = 0$	250			٧
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 250 V, V _{DS} = 250 V,Tc=125 °C			1 10	μ Α μ Α
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ±20V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 8.5 A		0.14	0.165	Ω

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25 V, f=1 MHz, V _{GS} =0	-	1000 178 28	-	pF pF pF
Coss eq	Equivalent output capacitance	Vgs=0, Vps =0 to 200 V	-	135	-	pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =200 V, I_{D} = 17 A V_{GS} =10 V (see Figure 17)	-	29.5 4.8 15.6	-	n C n C
R_{G}	Gate input resistance	f=1 MHz gate DC bias=0 test signal level=20 mV open drain	-	2	ı	Ω

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time Rise time	V_{DD} =125 V, I_{D} =8.5 A, R_{G} =4.7 Ω , V_{GS} =10 V (see Figure 16)	-	8.8 17.2	-	ns ns
t _{d(off)}	Turn-off delay time Fall time	V_{DD} =125V, I_{D} =8.5A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 16)	-	21 8.8	-	ns ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		17 68	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} =17 A, V _{GS} =0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 17 A, di/dt = 100 A/ μ s, V_{DD} = 50 V (see Figure 18)	1	157 0.91 11.6		ns μC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 17 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$ $V_{DD} = 50 \text{ V, Tj} = 150 \text{ °C}$ (see Figure 18)	-	196 1.34 13.7		ns μC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300 μs , duty cycle 1.5%

2.1 **Electrical characteristics (curves)**

Safe operating area for TO-220, Figure 2. Figure 3. Thermal impedance for TO-220, **DPAK DPAK**

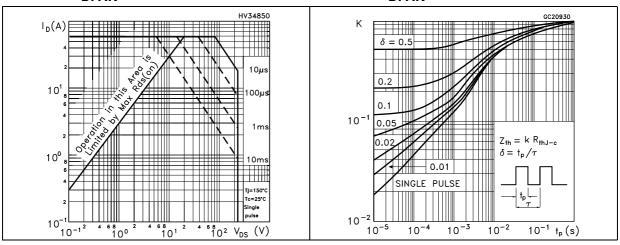


Figure 4. Figure 5. Safe operating area for TO-220FP Thermal impedance for TO-220FP

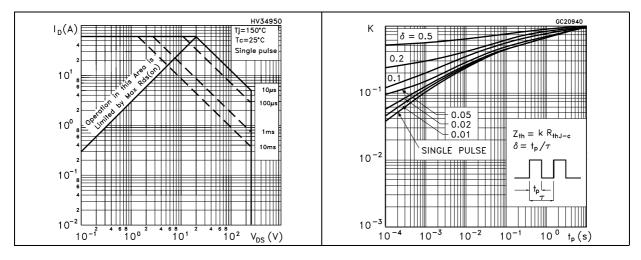


Figure 6. **Output characteristics**

Figure 7. **Transfer characteristics**

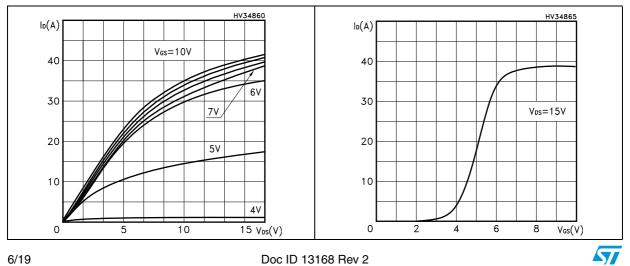


Figure 8. Normalized BV_{DSS} vs temperature Figure 9. Static drain-source on resistance

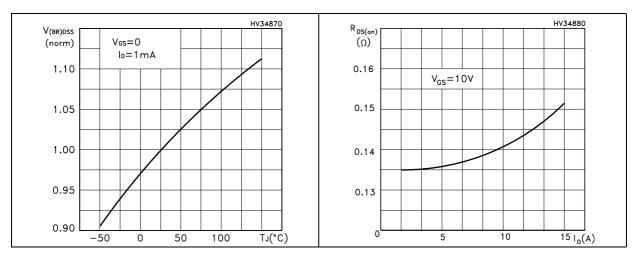
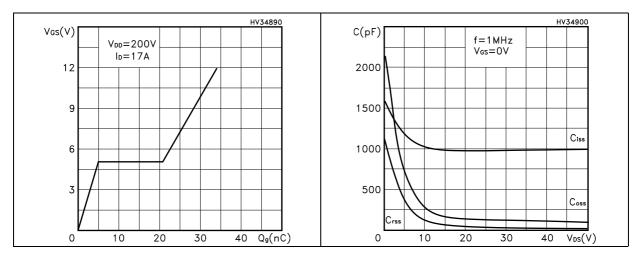
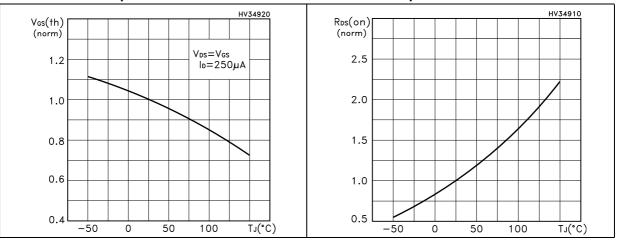
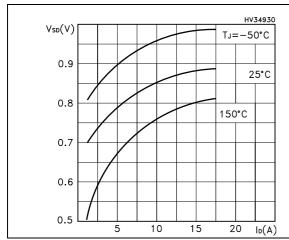
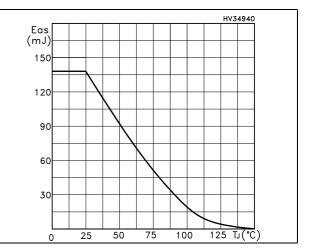


Figure 10. Gate charge vs gate-source voltage Figure 11. Capacitance variations


Figure 12. Normalized gate threshold voltage Figure 13. Normalized on resistance vs vs temperature temperature



577

Figure 14. Source-drain diode forward characteristics

Figure 15. Maximum avalanche energy

3 Test circuits

Figure 16. Switching times test circuit for resistive load

Figure 17. Gate charge test circuit

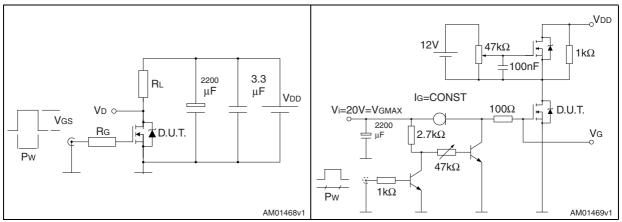


Figure 18. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped Inductive load test circuit

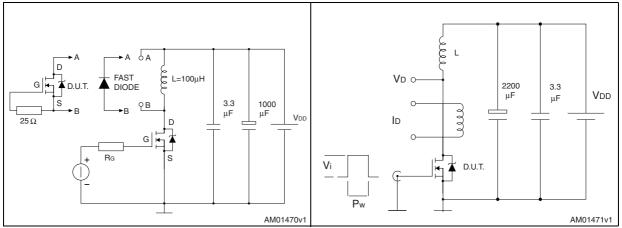
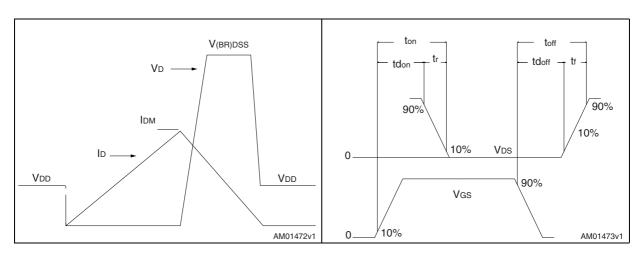



Figure 20. Unclamped inductive waveform

Figure 21. Switching time waveform

477

Doc ID 13168 Rev 2

9/19

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 9. DPAK (TO-252) mechanical data

Dim.		mm				
Dilli.	Min.	Тур.	Max.			
Α	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1		5.10				
E	6.40		6.60			
E1		4.70				
е		2.28				
e1	4.40		4.60			
Н	9.35		10.10			
L	1					
L1		2.80				
L2		0.80				
L4	0.60		1			
R		0.20				
V2	0°		8°			

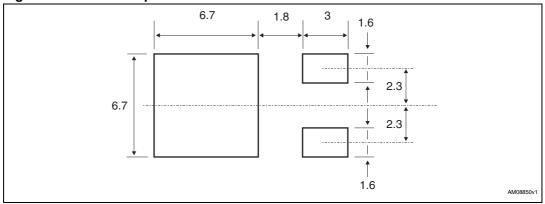
THERMAL PAD

THERMAL PAD

GAUGE PLANE

L2

L2


L4

THERMAL PAD

GAUGE PLANE

Figure 22. DPAK (TO-252) drawing

Figure 23. DPAK footprint^(a)

0068772_I

a. All dimensions are in millimeters.

Table 10. TO-220FP mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
Α	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
E	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.70			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

-*B*-Dia L6 L2 *L7* L3 F1 **L4** F2 Ε -G1_ 7012510_Rev_K_B

Figure 24. TO-220FP drawing

Table 11. TO-220 type A mechanical data

D:	mm				
Dim.	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
Е	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

Figure 25. TO-220 type A drawing

577

5 Packaging mechanical data

Table 12. DPAK (TO-252) tape and reel mechanical data

Tubic 12	Таре	· ·		Reel		
Dim.	m	m	D:	mm		
	Min.	Max.	Dim.	Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Figure 26. Tape for DPAK (TO-252)

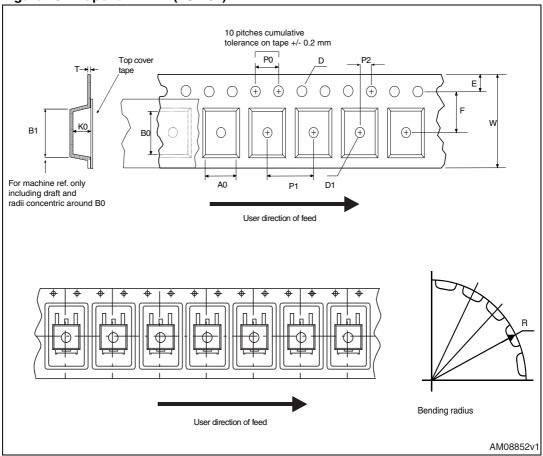
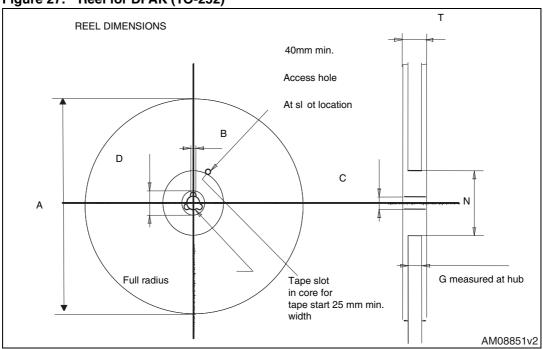



Figure 27. Reel for DPAK (TO-252)

477

Doc ID 13168 Rev 2

17/19

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
01-Feb-2007	1	First release.
07-Nov-2012	2	Minor text changes. The part number STI17NF25 has been moved to a separate datasheet. Section 4: Package mechanical data and Section 5: Packaging mechanical data have been updated.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477

Doc ID 13168 Rev 2

19/19