

JANS2ST3360K

Hi-Rel NPN and PNP complementary transistors 60 V, 0.8 A

Figure 1. Internal schematic diagram

Features

Polarity	V _{(BR)CEO}	I _C (max.)	h _{FE} ⁽¹⁾
NPN	60 V	0.8 A	160
PNP	-60 V	-0.8 A	160

1. @ I_C = 1 A and V_{CE} = 2 V.

Datasheet - production data

- Very low collector-emitter saturation voltage
- High current gain characteristic
- Fast-switching speed: ft= 130 MHz
- Hermetic package
- JANS qualified

Application

Power MOSFET drivers

Description

The JANS2ST3360K power bipolar transistor is a fast, dual complementary matched device (NPN and PNP) housed in a single Flat-8 hermetic package, intended for aerospace Hi-Rel and Radhard applications. ST's high current density technology ensures high levels of electrical and switching performance. Due to its radiation hardness specific design, the post radiation performance makes it the best in its class. The high switching performance allows this device to be particularly suitable for power MOSFET driver applications. It is qualified in the JANS system as per MIL-PRF19500. In case of mismatches between this datasheet and the specification of the agency, the latter takes precedence.

Order code	Qualification system	Agency specification	Package	Lead finish	Radiation level	Mass
J2ST3360K1	-	-	Flat-8	Gold	-	
JANS2ST3360KG	JANS	MIL-PRF-M19500/773	Flat-8	Gold	-	
JANS2ST3360KT	JANS	MIL-PRF-M19500/773	Flat-8	Solder dip	-	0.4 g
JANSR2ST3360KG	JANSR	MIL-PRF-M19500/773	Flat-8	Gold	100 krad	
JANSR2ST3360KT	JANSR	MIL-PRF-M19500/773	Flat-8	Solder dip	100 krad	
September 2016 DocID028431 Rev 2						1/14

This is information on a product in full production.

Table 1. Device summary

Contents

1	Absolute maximum ratings
2	Electrical characteristics
	2.1 Test circuits
3	Radiation hardness assurance7
	3.1 JANS radiation assurance
4	Package information
	4.1 Flat-8 package information
5	Order code 11
6	Shipping details
	6.1 Date code
	6.2 Documentation 12
7	Revision history

1 Absolute maximum ratings

Symbol	Decomptor	Va	Value		
Symbol	Parameter	NPN	PNP	– Unit	
V _{CBO}	Collector-base voltage $(I_E = 0)$	60	-60	V	
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	60	-60	V	
V_{EBO}	Emitter-base voltage $(I_C = 0)$	6	-6	V	
Ι _C	Collector current	0.8	-0.8	А	
I _{CM}	Collector peak current (t _P < 5 ms)	4	-4	А	
Ι _Β	Base current	0.2	-0.2	А	
I _{BM}	Base peak current (t _P < 5 ms)	0.4	-0.4	А	
Р	Total dissinction at T 25 °C	1.	4 ⁽¹⁾	W	
P _{TOT}	Total dissipation at $T_{amb} = 25 \text{ °C}$	0.	8 ⁽²⁾	W	
D	Total dissignation of T	7	(1)	W	
PTOT	P_{TOT} Total dissipation at $T_C = 25 \text{ °C}$		5 ⁽²⁾		
T _{STG}	Storage temperature range	6E 4	-65 to 200		
ТJ	Operating junction temperature range	-05 1	0 200	°C	

Table 2	. Absolute	maximum	ratings
---------	------------	---------	---------

1. Both sections.

2. One section.

Table	3.	Thermal	data

Symbol	Parameter	Value	Unit
P	Thermal resistance junction-amb	125 ⁽¹⁾	°C/W
R _{thj-amb}		180 ⁽²⁾	°C/W
D	Thermal resistance junction-case	25 ⁽¹⁾	°C/W
R _{thj-case}		35 ⁽²⁾	°C/W

1. Both sections.

2. One section.

2 Electrical characteristics

 T_{CASE} = 25 °C; unless otherwise specified.

Table 4. Electrical characteristics for NPN							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{CBO}	Collector cut-off current $(I_E = 0)$	V _{CB} = 60 V		-	100	nA	
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V		-	100	nA	
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA	60	-		V	
V _{(BR)CEO}	Collector-emitter breakdown voltage (I _B = 0)	I _C = 1 mA	60	-		V	
V _{(BR)EBO}	Emitter-base breakdown voltage	I _E = 10 μA	6	-		V	
V _{BE(on)}	Base-emitter on voltage	$V_{CE} = 2 V$ $I_C = 100 mA$	600	-	720	mV	
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_{C} = 0.8 \text{ A}$ $I_{B} = 40 \text{ mA}$ $I_{C} = 2 \text{ A}$ $I_{B} = 100 \text{ mA}$		-	160 380	mV mV	
h _{FE} ⁽¹⁾	DC current gain	$I_{C} = 100 \text{ mA}$ $V_{CE} = 2 \text{ V}$ $I_{C} = 1 \text{ A}$ $V_{CE} = 2 \text{ V}$	100 160	-	400		
t _{on} t _{off}	Turn on-time Turn off-time	Resistive load V _{CC} = 10 V, I _C = 0.8 A, I _{bon} = 80 mA, I _{boff} = -80 mA		-	175 2.5	ns µs	
C _{obo}	Output capacitance	$V_{CB} = 10 \text{ V}, I_E = 0 \text{ A},$ f = 1 MHz		-	45	pF	

1. Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
I _{CBO}	Collector cut-off current $(I_E = 0)$	V _{CB} = 60 V		-	100	nA		
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V		-	100	nA		
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA	60	-		V		
V _{(BR)CEO}	Collector-emitter breakdown voltage (I _B = 0)	I _C = 1 mA	60	-		V		
V _{(BR)EBO}	Emitter-base breakdown voltage	I _E = 10 μA	6	-		V		
V _{BE(on)}	Base-emitter on voltage	$V_{CE} = 2 V$ $I_C = 100 mA$	600	-	720	mV		
V _{CE(sat)} ⁽²⁾	Collector-emitter saturation voltage	$I_{C} = 0.8 \text{ A}$ $I_{B} = 40 \text{ mA}$ $I_{C} = 2 \text{ A}$ $I_{B} = 100 \text{ mA}$		-	180 440	mV		
h _{FE} ⁽¹⁾	DC current gain	$ I_{C} = 100 \text{ mA} V_{CE} = 2 \text{ V} \\ I_{C} = 1 \text{ A} \qquad V_{CE} = 2 \text{ V} $	100 160	-	400			
t _{on} t _{off}	Turn-on time Turn-off time	Resistive load V _{CC} = 10 V, I _C = 0.8 A, I _{bon} = 80 mA, I _{boff} = -80 mA		-	150 1	ns µs		
C _{obo}	Output capacitance	V _{CB} = 10 V, I _E = 0 A, f = 1 MHz		-	60	pF		

Table 5. Electrical characteristics for PNP⁽¹⁾

1. For PNP type, voltage and current values are negative.

2. Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%.

2.1 **Test circuits**

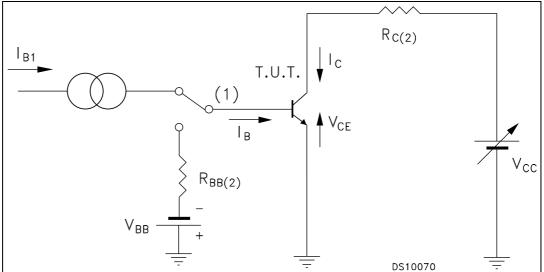
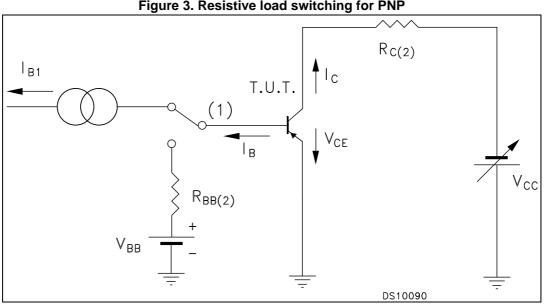



Figure 2. Resistive load switching for NPN

- 1. Fast electronic switch.
- 2. Non-inductive resistor.

Figure 3. Resistive load switching for PNP

1. Fast electronic switch.

2. Non-inductive resistor.

3 Radiation hardness assurance

The product guaranteed in radiation within the JANS system fully complies with the MIL-PRF-M19500/773 specifications.

3.1 JANS radiation assurance

ST's JANS parts are guaranteed at 100 krad (Si), tested as defined in MIL-PRF-19500 specifications, specifically the group D, subgroup 2 inspection, between 50 and 300 rad/s. On top of the standard JANSR high dose rate by wafer lot guarantee, this device includes an additional wafer by wafer 100 krad low dose rate guarantee at 0.1 rad/s.

A summary of the standard high dose rate by wafer lot JANSR guarantee is provided below:

- All tests are performed in accordance with MIL-PRF-19500 and test method 1019 of MIL-STD-750 for total ionizing dose.
- The table below provides for each monitored parameter, the test conditions and the acceptance criteria.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current $(I_E = 0)$	V _{CB} = 60 V		-	200	nA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V		-	200	nA
V _{BE(on)}	Base-emitter on voltage	V _{CE} = 2 V I _C = 100 mA	600	-	828	mV
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA	60	-		V
V _{(BR)CEO}	Collector-emitter breakdown voltage (I _B = 0)	I _C = 1 mA	60	-		V
V _{(BR)EBO}	Emitter-base breakdown voltage	I _E = 10 μA	6	-		V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_{C} = 0.8 \text{ A}$ $I_{B} = 40 \text{ mA}$ $I_{C} = 2 \text{ A}$ $I_{B} = 100 \text{ mA}$		-	184 437	mV mV
h _{FE} ⁽¹⁾	DC current gain	$ I_{C} = 100 \text{ mA} V_{CE} = 2 \text{ V} \\ I_{C} = 1 \text{ A} \qquad V_{CE} = 2 \text{ V} $	[50] ⁽²⁾ [80] ⁽²⁾	-	[400]	

Table 6. MIL-PRF-19500 (test method 1019) post radiation electrical characteristics for NPN

1. Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%.

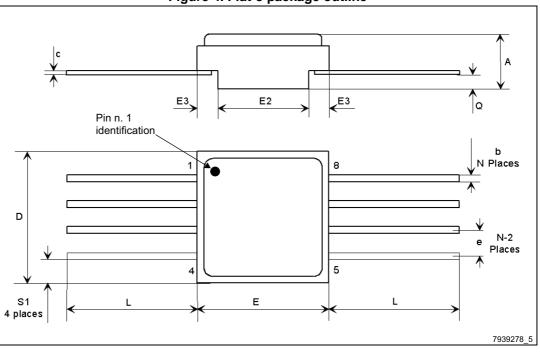
2. See method 1019 of MIL-STD-750 about how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the pre- and post-radiation h_{FE} . Note that the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} , which is based upon.

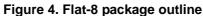
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector cut-off current $(I_E = 0)$	V _{CB} = 60 V		-	200	nA
I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 6 V		-	200	nA
V _{BE(on)}	Base-emitter on voltage	$V_{CE} = 2 V$ $I_C = 100 mA$	600	-	828	mV
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 100 μA	60	-		V
V _{(BR)CEO}	Collector-emitter breakdown voltage (I _B = 0)	I _C = 1 mA	60	-		V
V _{(BR)EBO}	Emitter-base breakdown voltage	I _E = 10 μA	6	-		V
V _{CE(sat)} ⁽²⁾	Collector-emitter saturation voltage	$I_{C} = 0.8 \text{ A}$ $I_{B} = 40 \text{ mA}$ $I_{C} = 2 \text{ A}$ $I_{B} = 100 \text{ mA}$		-	207 506	mV mV
h _{FE} ⁽¹⁾	DC current gain	$ I_{C} = 100 \text{ mA} V_{CE} = 2 \text{ V} \\ I_{C} = 1 \text{ A} \qquad V_{CE} = 2 \text{ V} $	[50] ⁽³⁾ [80] ⁽³⁾	-	[400]	

Table 7. MIL-PRF-19500 (test method 1019) post radiation electrical characteristics for $\mathrm{PNP}^{(1)}$

1. For PNP type, voltage and current values are negative.

2. Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%.


3. See method 1019 of MIL-STD-750 about how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the pre- and post-radiation h_{FE} . Note that the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} , which is based upon.



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 Flat-8 package information

Dim.	mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.24	2.44	2.64	0.088	0.096	0.104
b	0.38	0.43	0.48	0.015	0.017	0.019
С	0.10	0.13	0.16	0.004	0.005	0.006
D	6.35	6.48	6.61	0.250	0.255	0.260
Е	6.35	6.48	6.61	0.250	0.255	0.260
E2	4.32	4.45	4.58	0.170	0.175	0.180
E3	0.88	1.01	1.14	0.035	0.040	0.045
е		1.27			0.050	
L	6.51	-	7.38	0.256	-	0.291
Q	0.66	0.79	0.92	0.026	0.031	0.036
S1	0.92	1.12	1.32	0.036	0.044	0.052
Ν	08				08	1

Table 8. Flat-8 package mechanical da	ata
---------------------------------------	-----

5 Order code

5							
Device	Agency specification	Quality level	Radiation level	Package	Lead finish	Marking	Packing
J2ST3360K1	-	Eng. model	-	Flat-8	Gold	J2ST3360K1	
JANS2ST3360KG	MIL-PRF- M19500/773	Flight model	-	Flat-8	Gold	JANSM19500/773-01	
JANS2ST3360KT	MIL-PRF- M19500/773	Flight model	-	Flat-8	Solder dip	JANSM19500/773-01	Strip pack
JANSR2ST3360KG	MIL-PRF- M19500/773	Flight model	100 krad	Flat-8	Gold	JANSRM19500/773-01	
JANSR2ST3360KT	MIL-PRF- M19500/773	Flight model	100 krad	Flat-8	Solder dip	JANSRM19500/773-01	

Table 9. O	rderina	information
------------	---------	-------------

Contact ST sales office for information about the specific conditions for:

- Products in die form
- Other JANS quality levels

6 Shipping details

6.1 Date code

Date code xyywwz is explained below:

	x	хх	ww	z	
EM JANS	3	Loot two digits of		Latinday in the	
Flight JANS (in Singapore)	W	Last two digits of the year	Week digits	Lot index in the week	

Table 10. Date code

6.2 Documentation

Quality level	Radiation level	Documentation
Engineering model	-	Certificate of conformance
JANS flight	-	Certificate of conformance
JANSR flight	MIL-STD 100 krad and ST 100 krad LDR	Certificate of conformance. 50 rad/s and 0.1 rad/s radiation verification test report

Table 11. Document provided for each type of product

7 Revision history

Date	Revision	Changes
30-Sep-2015	1	Initial release.
14-Sep-2016	2	Updated Table 1: Device summary, Table 2: Absolute maximum ratings, Table 3: Thermal data, Table 4: Electrical characteristics for NPN, Table 5: Electrical characteristics for PNP, Table 9: Ordering information and Figure 4: Flat-8 package outline. Minor text changes.

Table 12. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID028431 Rev 2

