

Multiple multifunction voltage regulator for car radio

Features

- 2 stand-by regulators:
 3.3V (125mA)
 1.5V (300mA)
- 6 regulators: 10V (40mA)
 8.5V (200mA)
 3.3V (850mA)
 8/10V (1A)
 5/3.3/1.8V (200mA)
 1.8/2.5V(200mA)
- All regulators are low dropout outputs
- The different outputs voltage are controlled by I²C Bus.
- Reg3 on/off controlled by enable
- Reg1, Reg2, Reg4, Reg5, Reg6 on/off controlled by I²CBus.
- 3 high side drivers:
 2A (HSD1)
 0.45A (HSD2 & HSD3)
- No external charge pump capacitors are required
- Stand-by mode controlled by EN pin for I²C Bus and Reg1, Reg2, Reg3, Reg4, Reg5, Reg6, HSD1, HSD2, HSD3
- LVW function externally selectable
- Individual thermal shutdown

Table 1. Device summary

Flexiwatt27

- Independent current limiting
- Short circuit protection
- Load dump protection and overvoltage shutdown

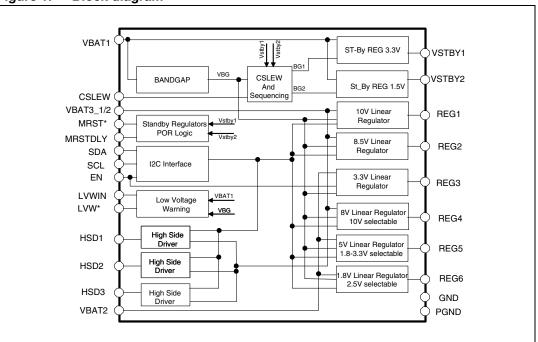
Description

The L5955 is an integration of three high side drivers, six regulators and two stand-by regulators with RESET function developed to provide the power to a complete audio system.

The outputs of the IC are controlled by I^2C bus and Enable pin.

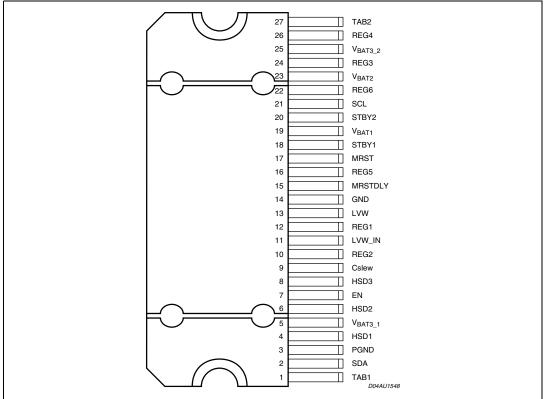
The device is equipped with sequencing and slew rate controls for the st-by regulators.

Order code	Package	Packing
L5955	Flexiwatt27	Tube


www.st.com

Contents

1	Bloc	k and pin connection diagrams
2	Elect	trical specification
	2.1	Absolute maximum ratings 4
	2.2	Thermal data
	2.3	Electrical characteristics 4
3	Fund	tional description
	3.1	Write mode:
	3.2	Chip address byte: 13
	3.3	Data byte:
4	Pack	age information
5	Revi	sion history


57

1 Block and pin connection diagrams

Figure 1. Block diagram

2 Electrical specification

2.1 Absolute maximum ratings

Table 2. Absolute r	maximum ratings
---------------------	-----------------

Symbol	Parameter	Value	Unit
VS1, VS2, VS3_1, VS3_2	DC operating supply voltage	0.6 to 26.5	v
VS1, VS2, VS3_1, VS3_2	Transient supply over voltages, rise time = 10ms delay time = 115ms	34	v
V _{S1,2,3_1,3} _2,ovs	Overvoltage shutdown	27	V
V _{in}	Input voltages (EN, SDA, SCL, LVW, MRST, MRSTDLY, CSLEW)	-0.6 to 5.5	V
V _{out}	Output control voltage	-0.6 to 18	V
Т _{ор}	Operating temperature range	-40 to 85	°C
T _{stg}	Storage temperature range	-40 to 150	°C

2.2 Thermal data

Table 3.	Thermal	data
Table 5.	merman	uala

Symbol	Parameter	Value	Unit
$R_{thj-case}$	Thermal resistance junction to case	1	°C/W

2.3 Electrical characteristics

Table 4. Electrical characteristics

(Refer to the application circuit, V _{bat} =V _{bat1} +V _{bat2} +V _{bat3} = 14V, I _{ST-BY1} = 0.5mA, I _{ST-BY2} =	
$0.5mA$, $I_{REG1} = I_{REG2} = I_{REG3} = I_{REG4} = I_{REG5} = I_{REG6} = 5mA$, $R_{HSD1} = R_{HSD2} = R_{HSD3} = 16\Omega$	

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{qST-BY}	Stand-by quiescent current	$\label{eq:Vbat} \begin{split} V_{bat} &= 14V, EN = 0. \\ I_{ST-BY1} &= Istby2{=}100uA, \\ IQ(Vbat){=}Ivbat1{+}Ivabt2{+}Ivbat3 \end{split}$			170	μA
Iq	Maximum quiescent current	$V_{bat} = 14V, EN=VSTBY1$ Istby1=125mA Istby2=300mA I _{REG1} = 40mA I _{REG2} = 200mA, I _{REG3} = 850mA I _{REG4} = 1A, I _{REG5} = 250mA I _{REG6} = 200mA, I _{HSD1} = 2A I _{HSD2,3} = 450mA		100		mA
I _{EN}	Enable input current	V_{bat} = 14V; 5V <enable <math="">\ge 0V;</enable>			10	μA
V _{IL} V _{IH}	Enable threshold voltage	V _{bat} = 14V;	2		0.8	V V
V _{L MRST}		$\label{eq:V_ST-BY1} \begin{split} V_{\text{ST-BY1}} &= 0.5 \text{V to } V_{\text{TH}} \text{ (ST-BY1)} \\ V_{\text{ST-BY2}} &= 0.5 \text{V to } V_{\text{TH}} \text{ (ST-BY2)} \\ \text{Rising} \end{split}$	0 0		0.4 0.4	V
V _{H MRST}	MRST output voltage	$V_{\text{ST-BY1}} = V_{\text{TH}} \text{ (ST-BY1) to } 0.5V$ $V_{\text{ST-BY2}} = V_{\text{TH}} \text{ (ST-BY2) to } 0.5V$ Falling	0 0		0.4 0.4	v
V _{TH MRST}	MRST output voltage threshold	Force V _{ST-BY1} & V _{ST-BY2} Low until MRST asserted	V _{ST-BY2} · 0.93 V _{ST-BY1} · 0.93		V _{ST-BY2} · 0.97 V _{ST-BY1} · 0.97	v v
t _{d MRST}	MRST delay time	see Figure 4		13		μs
t _{por MRST}	Power on reset delay time	CMRSTLY = 220nF see <i>Figure 4</i>	20			ms
t _{f MRST}	MRST fall time	$R_{RST} = 47$ kΩ, $C_{RST} = 50$ pF see <i>Figure 4</i>			1	μs
ISCR MRST	MRSTDLY current	MRSTDLY = 0	6		12	μA
I _{LKG} MRSTDLY	MRSTDLY leakage current	MRSTDLY = 5V			6	μ A
V _{sat} MRSTDLY	MRSTDLY saturation voltage	I _{MRSTDLY} =0.5mA	0		0.4	V
V_{TH}	LVWIN input voltage threshold	1.25 V (nominal)	1.22		1.28	V
I _{LKG}	Ivwin input leakage current				2	μA
V _{OH}	LVW output voltage	I _{OH} =-100µА	V _{STBY1} -0.2		V _{STBY1}	V

Table 4. Electrical characteristics (continued)

(Refer to the application circuit, $V_{bat} = V_{bat1} + V_{bat2} + V_{bat3} = 14V$, $I_{ST-BY1} = 0.5mA$, $I_{ST-BY2} = 0.5mA$, $I_{REG1} = I_{REG2} = I_{REG3} = I_{REG4} = I_{REG5} = I_{REG6} = 5mA$, $R_{HSD1} = R_{HSD2} = R_{HSD3} = 16\Omega$)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{OL}	LVW output voltage	I _{OL} = 100μA	0		0.2	V
T _S	Thermal shutdown for HSDS, REGS, V _{ST-BY1} , V _{ST-BY2}	HSDS, REGS, V _{ST-BY1} , V _{ST-BY2} min. load. Increase T _{amb} until HSDS, REGS, V _{ST-BY1,2} Disabled		170		°C
T _{S HYS}	Thermal shutdown hysteresis for HSDS, REGS, V _{ST-BY1} , V _{ST-BY2}	HSDS, REGS, V _{ST-BY1} , V _{ST-BY2} min. load. Decrease T _{amb} until HSDS, REGS, V _{ST-BY1,2} Disabled		10		°C
۱ _o	CSLEW output current		7		14	μA
t _{on}	ST-BY1, ST-BY2. minimum turn on time	C _{SLEW} =7nF; see <i>Figure 5</i>	1.6			ms
3.3V/125r	nA V _{ST-BY1}					
V _{ST-BY1}	Output voltage	I _{ST-BY1} = 125mA	3.14		3.46	V
۵V _{line}	Line regulation	$7V \le V_{BAT} \le 18V$ (Measure ΔV reg1 across V_{BAT} range)			10	mV
۵V _{load}	Load regulation	0.5mA ≤ I _{ST-BY1} ≤ 125mA (Measure ∆Vreg1 across V _{BAT} range)			50	mV
I _{q1}	Δ Quiescent current (measure ΔI_{BAT})	I _{ST-BY1} = 2mA, V _{BAT} = 14V, I _{ST-BY1} = 125mA, V _{BAT} = 14V			150 10	μA mA
V _{DROPOUT}	Dropout voltage (measure V _{BAT} - V _{ST-BY1} when V _{ST-BY1} drops 0.1V)	I _{ST-BY1} = 125mA I _{ST-BY1} = 5mA			2.6 1.2	V V
I _{lim1}	Current limit		160		350	mA
ΔV_{lead}	V _{ST-BY1} absolute differential	force V _{ST-BY2} Low; Measure V _{ST-BY1} - V _{ST-BY2}			2.5	V
ΔV_{lag}	output voltage	force V _{ST-BY1} Low; Measure V _{ST-BY1} - V _{ST-BY2}			0.25	V
SVR1	Supply voltage rejection ST-BY1	$f_o = 120-10$ kHz, V _{BAT} = 14V with 1.0Vp-p AC, $f_o = 20-20$ kHz, V _{BAT} = 14V	50 45			dB dB
		with 1.0Vp-p AC	Ъ			
1.5V/300r	nA V _{ST-BY2}	I				
V _{ST-BY2}	Output voltage	I _{ST-BY2} = 300mA	1.425		1.575	V
ΔV_{line}	Line regulation	$\label{eq:VBAT} \begin{array}{l} 7V \leq V_{BAT} \leq 18V \\ (measure \ \Delta \ V_{ST\text{-}BY2} \ across \ V_{BAT} \\ range) \end{array}$			50	mV

Table 4. Electrical characteristics (continued)

(Refer to the application circuit, $V_{bat} = V_{bat1} + V_{bat2} + V_{bat3} = 14V$, $I_{ST-BY1} = 0.5mA$, $I_{ST-BY2} = 0.5mA$, $I_{REG1} = I_{REG2} = I_{REG3} = I_{REG4} = I_{REG5} = I_{REG6} = 5mA$, $R_{HSD1} = R_{HSD2} = R_{HSD3} = 16\Omega$)

Symbol	Parameter	Test condition	Min.	Typ.	Max.	Unit
ΔV_{load}	Load regulation	$0.5mA \leq I_{ST\text{-}BY2} \leq 300mA$			100	mV
V _{DROPOUT}	Dropout voltage (measure V_{BAT} - V_{ST-BY2} when V_{ST-BY2} drops0.1V)	I _{ST-BY2} = 300mA I _{ST-BY2} = 5mA			4.1 3	V V
I _{lim2}	Current limit		360		700	mA
SVR3	Supply voltage rejection ST-BY2	$f_o = 120-10$ kHz, $V_{BAT} = 14V$ with 1.0Vp-p AC, $f_o = 20-20$ kHz, $V_{BAT} = 14V$ with 1.0Vp-p AC	50 45			dB dB
10V/40m/	A REG1 output					
V _{REG1}	Output voltage	I _{REG1} = 40mA	9.50	10	10.5	V
ΔV_{line}	Line regulation	$\begin{array}{l} \text{11.4V} \leq \text{V}_{BAT} \!$			55	mV
ΔV_{load}	Load regulation	$5\text{mA} \le I_{REG1} \le 40\text{mA}$			55	mV
V _{DROPOUT}	Dropout voltage (measure V _{BAT} - V _{REG1} when V _{REG1} drops 0.1V)	I _{REG1} = 40mA I _{REG1} = 5mA			1200 300	mV mV
I _{lim1}	Current limit		60		200	mA
SVR	Supply voltage rejection (guaranteed by characterization- test at 1kHz with 50dB Limit)		50			dB
8.5V/200r	nA REG2 output					
V _{REG2}	Output voltage	I _{REG2} = 200mA	8.3	8.5	8.7	V
ΔV_{line}	Line regulation	$9.6V \le V_{BAT} \le 18V$ (measure ΔV_{REG2} across V_{BAT} range)			50	mV
ΔV_{load}	Load regulation	$5\text{mA} \leq I_{REG2} \leq 200\text{mA}$			50	mV
V _{DROPOUT}	Dropout voltage (measure V _{BAT} - V _{REG2} when V _{REG2} drops 0.1V)	I _{REG2} = 200mA I _{REG2} = 5mA			1100 600	mV mV
I _{lim2}	Current limit		225		525	mA
SVR	Ripple rejection (guaranteed By characterization-test at 1kHz with 50dB limit)		50			dB
3.3V/850r	nA REG3 output					
V _{REG3}	Output voltage	I _{REG3} = 850mA	3.14		3.46	V
ΔV_{line}	Line regulation	$7V \le V_{BAT} \le 18V$ (Measure ΔV_{REG2} Across V_{BAT} range)			40	mV
ΔV_{load}	Load regulation	$5\text{mA} \leq I_{REG3} \leq 850\text{mA}$			100	mV
V _{DROPOUT}	Dropout voltage (measure V_{BAT} - V_{REG3} when V_{REG3} drops 0.1V)	I _{REG3} = 850mA I _{REG3} = 5mA			3.46 2.86	< <

Table 4. Electrical characteristics (continued)

(Refer to the application circuit, $V_{bat} = V_{bat1} + V_{bat2} + V_{bat3} = 14V$, $I_{ST-BY1} = 0.5mA$, $I_{ST-BY2} = 0.5mA$, $I_{REG1} = I_{REG2} = I_{REG3} = I_{REG4} = I_{REG5} = I_{REG6} = 5mA$, $R_{HSD1} = R_{HSD2} = R_{HSD3} = 16\Omega$)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{lim4}	Current limit		1.25		2.5	А
SVR	Ripple rejection (guaranteed by characterization-test at 1kHz with 50dB Limit)		50			dB
8V/10V/1	A REG4 output					
V _{REG4}	Output voltage	I _{REG4} = 1A	7.6 9.50		8.4 10.5	V V
∆V _{line}	Line regulation	$\begin{array}{l} 11.4V \leq V_{BAT} \leq 18V, \mbox{ For } \\ V_{REG4} = 10V \\ 9.3V < V_{BAT} < 18V \mbox{ For } V_{REG4} = 8V \\ (measure \ensure \ensure\ensure \ensure \ensure\ensure \ensure \ensure \ensure \ensure$			50 50	mV mV
ΔV_{load}	Load regulation	5mA ≤ I _{REG4} ≤ 1A			150	mV
V _{DROPOUT}	Dropout voltage (measure V _{BAT} - V _{REG4} when V _{REG4} drops 0.1V)	$I_{REG4} = 1A$ $I_{REG4} = 5mA$			1.100 600	mV mV
I _{lim4}	Current limit		1.5		3	А
SVR	Ripple rejection (guaranteed By characterization-test at 1kHz with 50dB Limit)		50			dB
1.8-3.3-5\	//250mA REG5 output			L		
V _{REG5}	Output voltage	I _{REG5} = 250mA	1.71 3.14 4.75		1.89 3.46 5.25	V V V
ΔV_{line}	Line regulation	$\begin{array}{l} 7V \leq V_{BAT} \leq 18V \text{ for } V_{REG5} = 1.8V,\\ 3.3V\\ 9V < V_{BAT} > 18V \text{ for } V_{REG5} = 5V\\ (measure \ \Delta \ V_{REG5} \text{ across } V_{BAT}\\ range) \end{array}$			40	mV
ΔV_{load}	Load regulation	$5mA \le I_{REG5} \le 250mA$			100	mV
V _{DROPOUT}	Dropout voltage (measure V _{BAT} - V _{REG5} when V _{REG5} drops 0.1V)	$\begin{split} & I_{REG5} = 250 \text{mA} @ V_{REG5} = 1.8 \text{V} \\ & I_{REG5} = 5 \text{mA} @ V_{REG5} = 1.8 \text{V} \\ & I_{REG5} = 250 \text{mA} @ V_{REG5} = 3.3 \text{V} \\ & I_{REG5} = 5 \text{mA} @ V_{REG5} = 3.3 \text{V} \\ & I_{REG5} = 250 \text{mA} @ V_{REG5} = 5 \text{V} \\ & I_{REG5} = 5 \text{mA} @ V_{REG5} = 5 \text{V} \end{split}$			4.89 4.29 3.46 2.86 1.85 1.25	V V V V V
I _{lim5}	Current limit		300		700	mA
SVR	Ripple rejection (guaranteed by characterization-test at 1kHz with 50dB limit)		50			dB

8/17

Table 4. Electrical characteristics (continued)

(Refer to the application circuit, $V_{bat} = V_{bat1} + V_{bat2} + V_{bat3} = 14V$, $I_{ST-BY1} = 0.5mA$, $I_{ST-BY2} = 0.5mA$, $I_{REG1} = I_{REG2} = I_{REG3} = I_{REG4} = I_{REG5} = I_{REG6} = 5mA$, $R_{HSD1} = R_{HSD2} = R_{HSD3} = 16\Omega$)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
1.8-2.5V/2	200mA REG6 output					
V _{REG6}	Output voltage	I _{REG6} = 200mA	1.71 2.38		1.89 2.62	V V
ΔV_{line}	Line regulation	$7V \le V_{BAT} \le 18V$ (measure Δ V_{REG6} across V_{BAT} range)			40	mV
ΔV_{load}	Load regulation	$5mA \le I_{REG6} \le 200mA$			50	mV
V _{DROPOUT}	Dropout voltage (measure V _{BAT} - V _{REG6} when V _{REG6} drops 0.1V)	$I_{REG6} = 200 \text{mA} @ V_{REG6} = 1.8 \text{V}$ $I_{REG6} = 5 \text{mA} @ V_{REG6} = 1.8 \text{V}$ $I_{REG6} = 200 \text{mA} @ V_{REG6} = 2.5 \text{V}$ $I_{REG6} = 5 \text{mA} @ V_{REG6} = 2.5 \text{V}$			4.89 4.29 4.22 3.62	V V V V
I _{lim6}	Current limit		240		600	mA
SVR	Ripple rejection (guaranteed by characterization-test at 1kHz with 50dB limit)		50			dB
2A HSD1						
V _{sat}	Output saturation voltage	IHSD1 = 1A continuous time operation IHSD1=2A t=5seconds			0.6 1.2	V V
I _{leak1}	Output leakage current	All Driver Outputs are Off			50	μA
I _{lim}	Current limiting	R _{HSD1} = 0.5Ω	2.4		4	A
	D2 & HSD3					
V _{sat}	Output saturation voltage	IHSD2,3 = 300mA continuous time operation			0.6	V
		IHSD2,3=450mA t=5 seconds			1.2	V
I _{leak2,3}	Output leakage current	All driver outputs are Off	0.550		50	μΑ
I _{lim}	Current limiting	R _{HSD2,3} = 0.5Ω	0.550		1	A
	ristics for I ² C	1				
V _{IL}	LOW level input voltage				1.5	V
V _{IH}	HIGH level input voltage		3			V
V _{HYS}	Input hysteresis		0.2			V
V _{OL1}	LOW level output	Sink current = 3mA			0.4	V
V _{OL1}		Sink current = 6mA			0.6	V
I ₁	Input current	$0.5V \le V_{l} \le 4.5V$			10	μA
f _{SCL}	SCL clock frequency				400	kHz

51

3 Functional description

The three high side drivers are one 2A output (HSD1) and two 450mA outputs (HSD2 & 3).

The six regulator outputs are 10V at 40mA (REG1), 8.5V at 200mA (REG2), 3.3V at 850mA (REG3), 8/10V at 1A (REG4), 1.8V/3.3V/5V at 250mA (REG5) and 1.8V/2.5V at 200mA (REG6).

The two stand-by regulators are 3.3V at 125mA (ST-BY1) and 1.5V at 300mA (ST-BY2).

ST-BY1 and ST-BY2 are equipped with Reset function.

ST-BY1 and ST-BY2 share one Reset output (MRST).

A slew rate limiter and a sequencing function control ST-BY1 and ST-BY2 turn on/off.

The 8.5V regulator output (REG2) has a tighter tolerance output than the other regulator outputs.

The 8.5V output is a $\pm 2.5\%$ (5% total range) output over temperature to improve performance and reduce cost on the 8.5V output. The other outputs are $\pm 5\%$ over temperature.

The two STAND-BY regulators are switched on/off from battery line.

The REG3 is switched on/off by Enable pin which also activate the I²C BUS.

The other Regulators and HSD's are turned on/off independently by I²C BUS, which also controls the regulators' output voltages.

With ENABLE pin set to 0 the total current sunk from the battery line minimized.

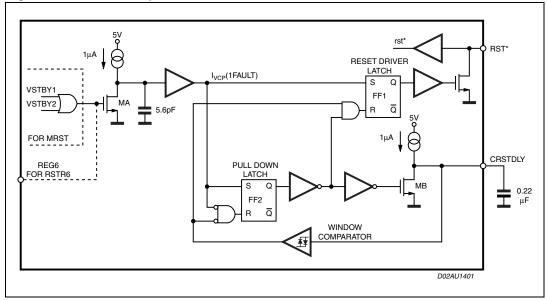
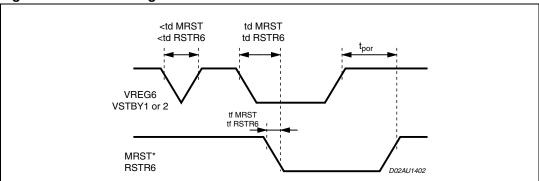
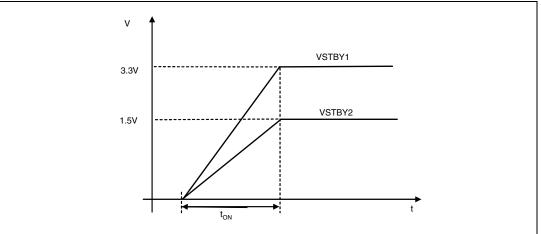
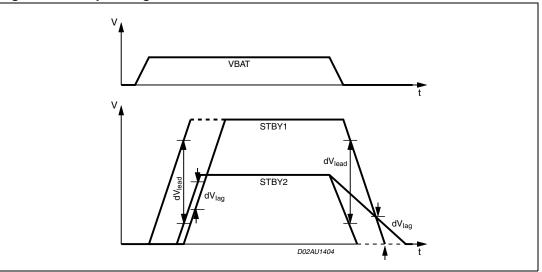
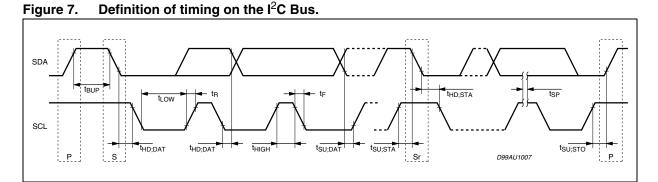




Figure 3. Reset and power-on reset schematic


Figure 4. Reset timing



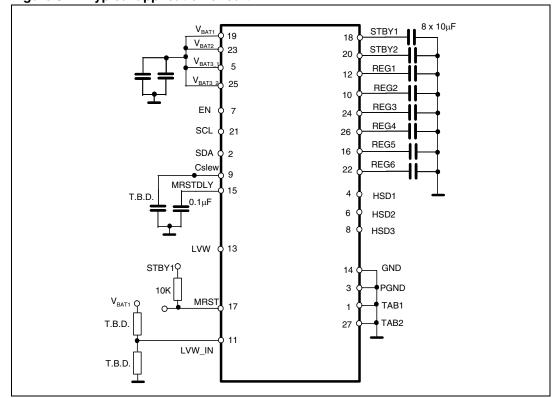
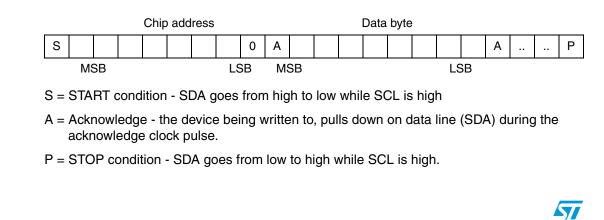


Figure 6. Sequencing function



3.1 Write mode:

3.2 Chip address byte:

Table 5.Chip address byte

Chip address							Read/write
A7	A6	A5	A4	A3	A2	A1	A0
0	0	0	1	0	0	0	0

3.3 Data byte:

Table 6. Data byte

b7	b6	b5	b4	b3	b2	b1	b0
	Data byte 0						
REG6 SET	REG5 SET2	REG5 SET1	REG4 SET		HSD3EN	HSD2EN0	HSD1EN0
			Data I	byte 1			
	REG6EN	REG5EN	REG4EN		REG2EN	REG1EN	

Default mode is 0000 0000 which corresponds to all outputs being off, low power mode.

Table 7.Data byte 0 description

Name	Description	State	Definition	bit
REG6 SET	REG6 output voltage configuration	0	1.8V	b7
nedo Sel	head output voltage configuration	1	2.5V	b7
		00	5.0V	b5, b6
REG5 SET1		01	3.3V	b5, b6
REG5 SET2	REG5 output voltage configuration	10	1.8V	b5, b6
		11	х	b5, b6
	REG4 output voltage configuration	0	8.0V	b4
REG4 SET		1	10.0V	b4
HSD3EN	HSD3 Enable	0	Off	b2
I ISDSEN		1	On	b2
HSD2EN		0	Off	b1
HSD2EN	HSD2 Enable	1	On	b1
	HSD1 Enable	0	Off	b0
HSD1EN		1	On	b0

Name	Description	State	Definition	bit
REG6 EN	REG6 Enable	0	Off	b6
nedo en		1	On	00
REG5 EN	REG5 Enable	0	Off	b5
	REGS ENADIE	1	On	00
REG4 EN	REG4 Enable	0	Off	b4
		1	On	
REG2 EN	REG2 Enable	0	Off	b2
REG2 EN		1	On	02
REG1 EN	REG1 Enable	0	Off	b1
	REGIENADIE	1	On	UI

Table 8.Data byte 1 description

57

4 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. the category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

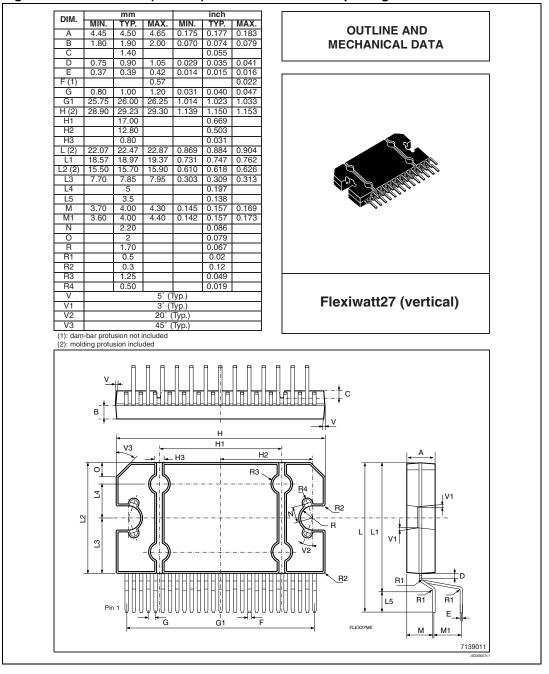


Figure 9. Flexiwatt27 (vertical) mechanical data and package dimensions

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
29-Aug-2007	1	Initial release.
17-Sep-2013	2	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

