

SD2942

RF power transistor HF/VHF/UHF N-channel MOSFETs

Features

- Gold metallization
- Excellent thermal stability
- Common source configuration, push pull
- P_{OUT} = 350W min. with 15 db gain @ 175 MHz
- Low R_{DS(on)}

Description

The SD2942 is a gold metallized N-channel MOS field-effect RF power transistor. The SD2942 offers 25% lower $R_{ds(ON)}$ than industry standard and 20% higher power saturation than ST SD2932. These characteristics make the SD2942 ideal for 50V DC very high power application up to 250 MHz.

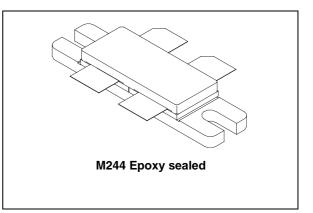
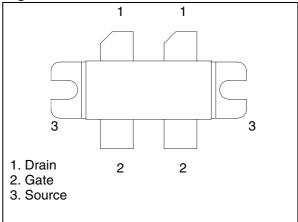



Figure 1. Pin connection

Table 1.	Device	summary
	001100	o anna y

Order code	Marking	Package	Packaging
SD2942	SD2942	M244	Plastic Tray

www.st.com

Content

1	Electrical data
	1.1 Maximum rating 3
	1.2 Thermal data
2	Electrical characteristics
3	Impedance
4	Typical performance
5	Test circuit
6	Package mechanical data 13
7	Revision history

1 Electrical data

1.1 Maximum rating

 $T_{CASE} = 25^{\circ} C$

Table 2. Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{(BR)DSS} ⁽¹⁾	Drain source voltage	130	V
V _{DGR} ⁽¹⁾	Drain-gate voltage ($R_{GS} = 1M\Omega$)	130	V
V _{GS}	Gate-source voltage	±20	V
۱ _D	Drain current	40	Α
P _{DISS}	Power dissipation	500	W
Т _Ј	Max. operating junction temperature	+200	°C
T _{STG}	Storage temperature	-65 to +150	°C

1. $T_J = 150 \ ^{\circ}C$

1.2 Thermal data

Table 3. Thermal data

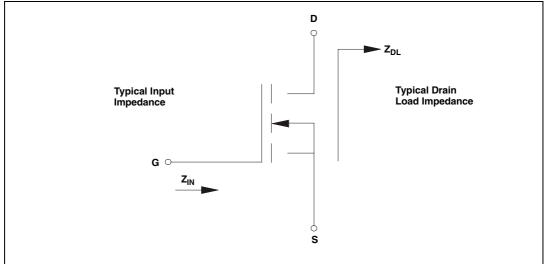
Symbol	Parameter	Value	Unit
R _{thJC}	Junction to case thermal resistance	0.35	° C/W

2 Electrical characteristics

 $T_{CASE} = 25^{\circ}C$

Table 4.Static (per section)

Symbol		Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS} ⁽¹⁾	$V_{GS} = 0 V$	I _{DS} = 100 mA		130			V
I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = 50 V$	V _{DS} = 50 V			100	μA
I _{GSS}	V _{GS} = 20 V	$V_{DS} = 0 V$				250	nA
V _{GS(Q)}	V _{DS} = 10 V	I _D = 250 mA		1.5		4	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 10 A				3.0	V
G _{FS}	V _{DS} = 10 V	I _D = 5 A		5			mho
C _{ISS}	$V_{GS} = 0 V$ $V_{DS} = 50 V$		f = 1 MHz		415		pF
C _{OSS}	$V_{GS} = 0 V$	V _{DS} = 50 V f = 1 MH			236		pF
C _{RSS}	$V_{GS} = 0 V$ $V_{DS} = 50 V$		f = 1 MHz		17		pF


1. $T_J = 150^{\circ} C$

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
P _{OUT}	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 500 \text{ mA}$ $f = 175 \text{MHz}$	350			W
G _{PS}	$V_{DD} = 50 \text{ V} I_{DQ} = 500 \text{ mA} P_{OUT} = 350 \text{ W} f = 175 \text{MHz}$	15	17		dB
η _D	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 500 \text{ mA}$ $P_{OUT} = 350 \text{ W}$ $f = 175 \text{MHz}$	55	61		%
Load Mismatch	V_{DD} = 50 V I _{DQ} = 500 mA P _{OUT} = 350 W f = 175MHz all phase angles	5:1			VSW R

3 Impedance

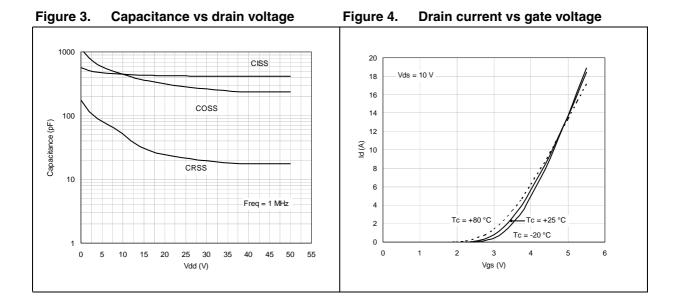
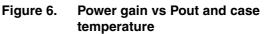
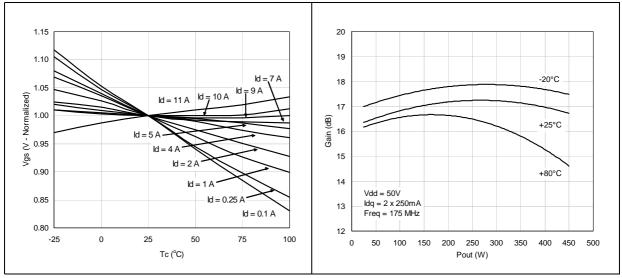


Table 6.Impedance data


f	Z _{IN} (Ω)	Z _{DL} (Ω)
250 MHz	1.3 - j 1.9	1.9 + j 3.2
230 MHz	1.2 - j 1.8	2.1 + j 3.7
200 MHz	1.1 - j 1.6	2.7 +j 4.2
175 MHz	1.0 - j 1.4	3.3 + j 4.8
100 MHz	1.8 - j 2.5	7.5 + j 9
50 MHz	3.2 - j 4.4	10 + j 12



4 Typical performance

Figure 5. Gate-source voltage vs case temperature

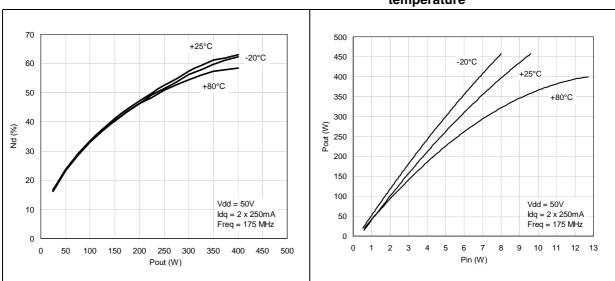


Figure 7. Efficiency vs case temperature

SD2942

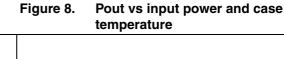
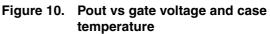
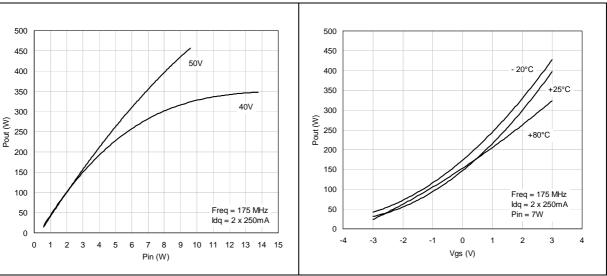
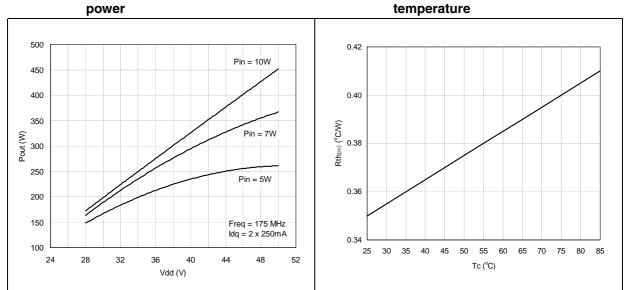
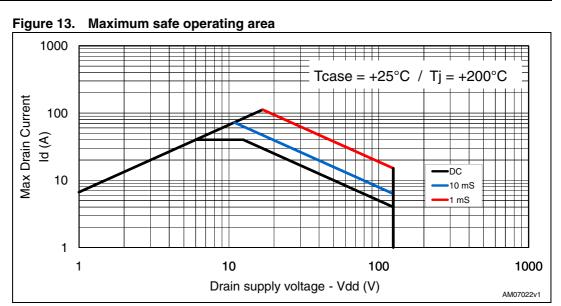




Figure 9. Pout vs input power and drain voltage

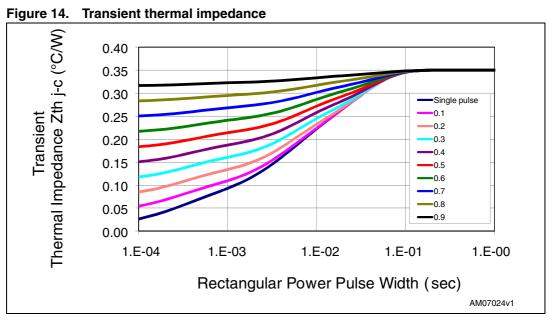
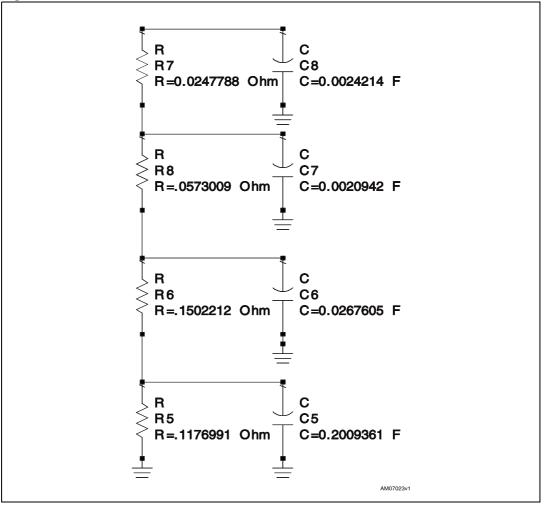
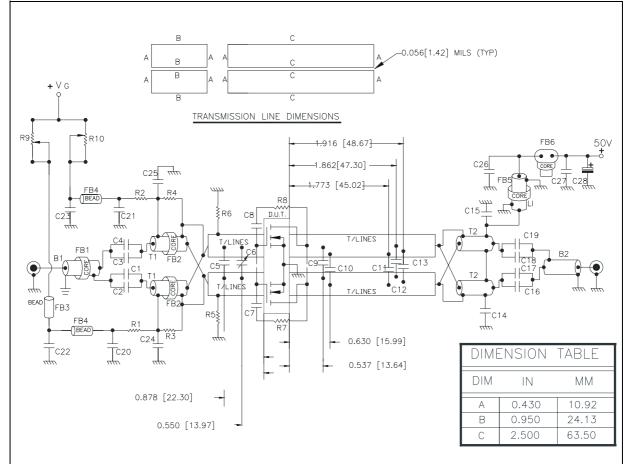

Figure 12.

Figure 11. Pout vs drain voltage and input power



Maximum thermal resist vs case



Doc ID 11736 Rev 3

5 Test circuit

Figure 16. 175 MHz test circuit schematic

Note: 1 Dimension at component symbol are reference for component placement.


2 Gap between ground and transmission lines is + 0.002{0.05} - 0.000{0.00} Typ.

Symbol	Description
R1,R2,R5,R6	470 Ω 1 W, surface mount chip resistor
R3,R4	360 Ω 0.5 W, carbon comp. axial lead resistor or equivalent
R7,R8	560 Ω 2 W, resistor two turn wire air-wound axial lead resistor
R9,R10	20 K Ω 3.09 W, 10 turn wirewound precision potentiometer
C1,C4	680 pF ATC 130B surface mount ceramic chip capacitor
C2,C3,C7,C8,C17,C19,C20,C21	10000 pF ATC 200B surface mount ceramic chip capacitor
C5	75 pF ATC 100B surface mount ceramic chip capacitor
C6	ST40 25 pF - 115 pF miniature variable trimmer
C9,C10	47 pF ATC 100B surface mount ceramic chip capacitor
C11,C12, C13	43 pF ATC 100B surface mount ceramic chip capacitor
C14,C15,C24,C25	1200 pF ATC 700B surface mount ceramic chip capacitor
C16,C18	470 pF ATC 700B surface mount ceramic chip capacitor
C22,C23	0.1 μ F / 500 V surface mount ceramic chip capacitor
C26,C27	0.01 μ F / 500 V surface mount ceramic chip capacitor
C28	10 μ F / 63 aluminum electrolytic axial lead capacitor
B1	$50\ \Omega\text{RG316}$ O.D 0.076[1.93] L = 11.80[299.72] flexible coaxial cable 4 turns thru fair-rite bead
B2	50 Ω RG-142B O.D 0.165[4.19] L = 11.80[299.72] flexible coaxial cable
Т1	R.F. transformer 4:1, 25 Ω O.D RG316-25 O.D 0.080[2.03] L = 5.90[149.86] flexible coaxial cable 2 turns thru fair-rite multi-aperture core
Т2	R.F. transformer 1:4, 25 Ω semi-rigid coaxial cable O.D. 0.141[3.58] L = 5.90[149.86]
L1	Inductor λ 1/4 wave 50 Ω O.D 0.165[4.19] L = 11.80 [299.72] flexible coaxial cable 2 turns thru fair-rite bead
FB1,FB5	Shield bead
FB2,FB6	Multi-aperture core
FB3	Multilayer ferrite chip bead (surface mount)
FB4	Surface mount emi shield bead
РСВ	Woven glass reinforced ptfe microwave Laminate 0.06", 1 oz EDCu, both sides, ϵr = 2.55

 Table 7.
 175 MHz test circuit component part list

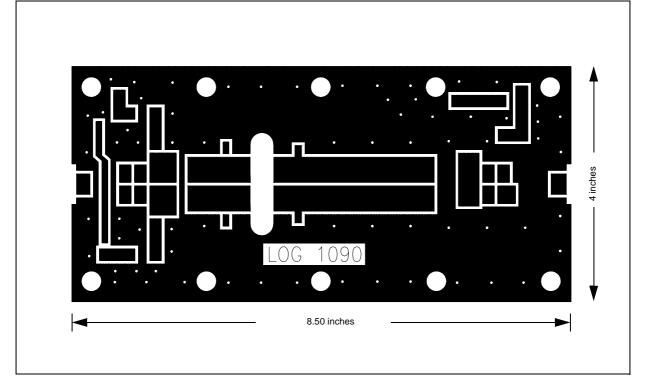
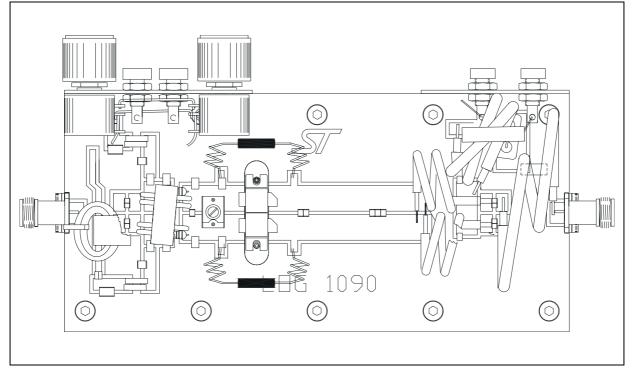



Figure 18. 175 MHz test circuit

12/16

Doc ID 11736 Rev 3

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DIM		mm.			inch		
DIM.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	5.59		5.84	0.220		0.230	
В		5.08			0.200		
С	3.02		3.28	0.119		0.129	
D	9.65		9.91	0.380		0.390	
E	19.81		20.82	0.780		0.820	
F	10.92		11.18	0.430		0.440	
G		27.94			1.100		
Н	33.91		34.16	1.335		1.345	
I	0.10		0.15	0.004		0.006	
J	1.52		1.78	0.060		0.070	
К	2.59		2.84	0.102		0.112	
L	4.83		5.84	0.190		0.230	
М	10.03		10.34	0.395		0.407	
Ν	21.59		22.10	0.850		0.870	

Table 8. M244 (.400 x .860 4/L BAL N/HERM W/FLG)

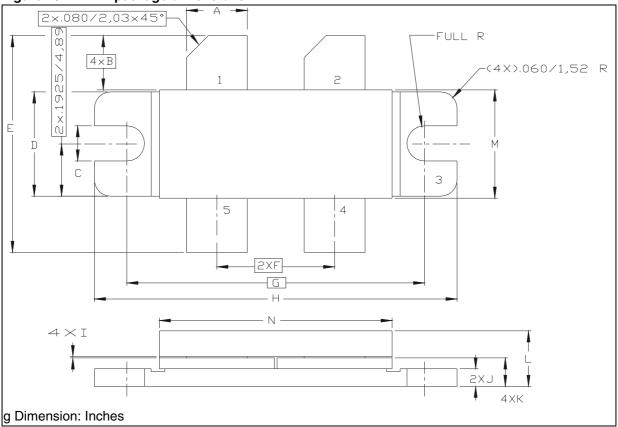


Figure 19. M244 package dimensions

7 Revision history

Table 9.Document revision history

Date	Revision	Changes
18-Oct-2005	1	First Issue.
04-Jan-2006	2	Complete version.
14-Apr-2010	3	Added Figure 13, Figure 14 and Figure 15.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

16/16

Doc ID 11736 Rev 3

