## **MOSFET** – Single, N-Channel, Small Signal, XDFN3, 0.62 x 0.42 x 0.4 mm 20 V, 220 mA

• Low Profile Ultra Small Package, XDFN3 (0.62 x 0.42 x 0.4 mm)

• These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS



## **ON Semiconductor®**

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> Max |
|----------------------|-------------------------|--------------------|
|                      | 1.5 Ω @ 4.5 V           |                    |
| 20 V                 | 1.8 Ω @ 3.3 V           |                    |
|                      | 2.2 Ω @ 2.5 V           | 220 mA             |
|                      | 3.3 Ω @ 1.8 V           |                    |
|                      | 5.0 Ω @ 1.5 V           |                    |

# Compliant Applications

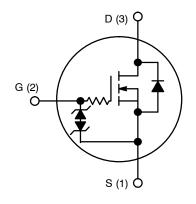
• 1.5 V Gate Drive

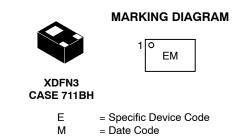
Features

- Small Signal Load Switch
- High Speed Interfacing
- Level Shift

#### **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise stated)

for Extremely Space-Constrained Applications


| Para                                                              | Parameter              |                     |                                   | Value         | Unit |  |
|-------------------------------------------------------------------|------------------------|---------------------|-----------------------------------|---------------|------|--|
| Drain-to-Source Voltage                                           |                        |                     | V <sub>DSS</sub>                  | 20            | V    |  |
| Gate-to-Source Volta                                              | Gate-to-Source Voltage |                     |                                   | ±8            | V    |  |
| Continuous Drain                                                  | Steady                 | $T_A = 25^{\circ}C$ | Ι <sub>D</sub>                    | 220           | mA   |  |
| Current (Note 1)                                                  | State                  | $T_A = 85^{\circ}C$ |                                   | 158           |      |  |
|                                                                   | t ≤ 5 s                | $T_A = 25^{\circ}C$ |                                   | 253           |      |  |
| Power Dissipation (Note 1)                                        | Steady<br>State        | $T_A = 25^{\circ}C$ | PD                                | 125           | mW   |  |
|                                                                   | t ≤ 5 s                |                     |                                   | 166           |      |  |
| Pulsed Drain<br>Current                                           | t <sub>p</sub> = 10 μs |                     | I <sub>DM</sub>                   | 846           | mA   |  |
| Operating Junction and Storage<br>Temperature                     |                        |                     | T <sub>J</sub> , T <sub>STG</sub> | –55 to<br>150 | °C   |  |
| Source Current (Body Diode) (Note 2)                              |                        |                     | ۱ <sub>S</sub>                    | 200           | mA   |  |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |                        | ΤL                  | 260                               | °C            |      |  |
| 0                                                                 |                        |                     |                                   |               |      |  |


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm<sup>2</sup>, 1 oz Cu.

2. Pulse Test: pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%

**N-CHANNEL MOSFET** 





#### **ORDERING INFORMATION**

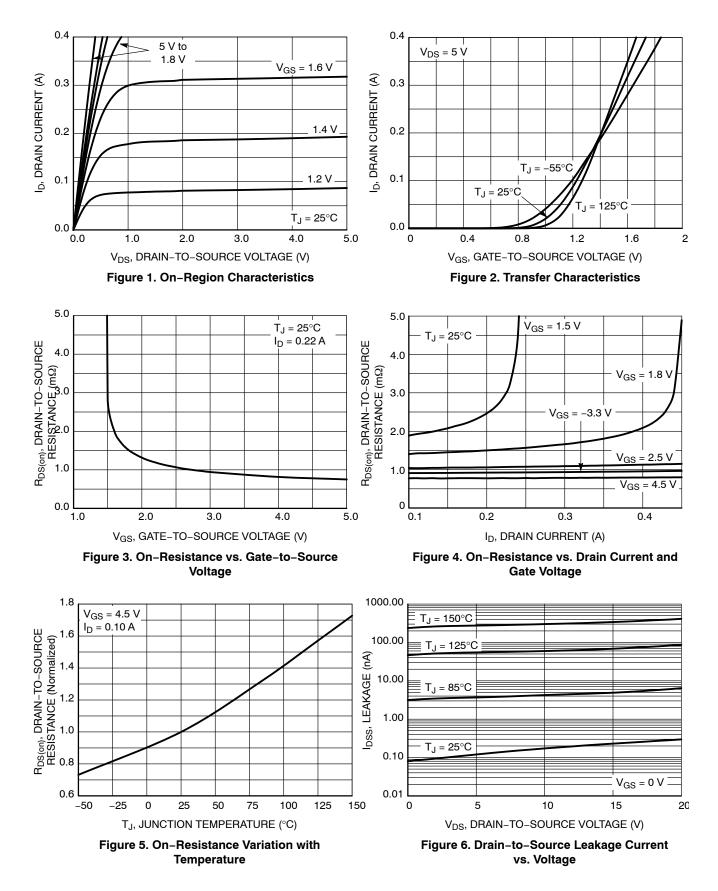
| Device          | Package            | Shipping <sup>†</sup> |
|-----------------|--------------------|-----------------------|
| NTNS1K5N021ZTCG | XDFN3<br>(Pb-Free) | 8000 / Tape &<br>Reel |

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

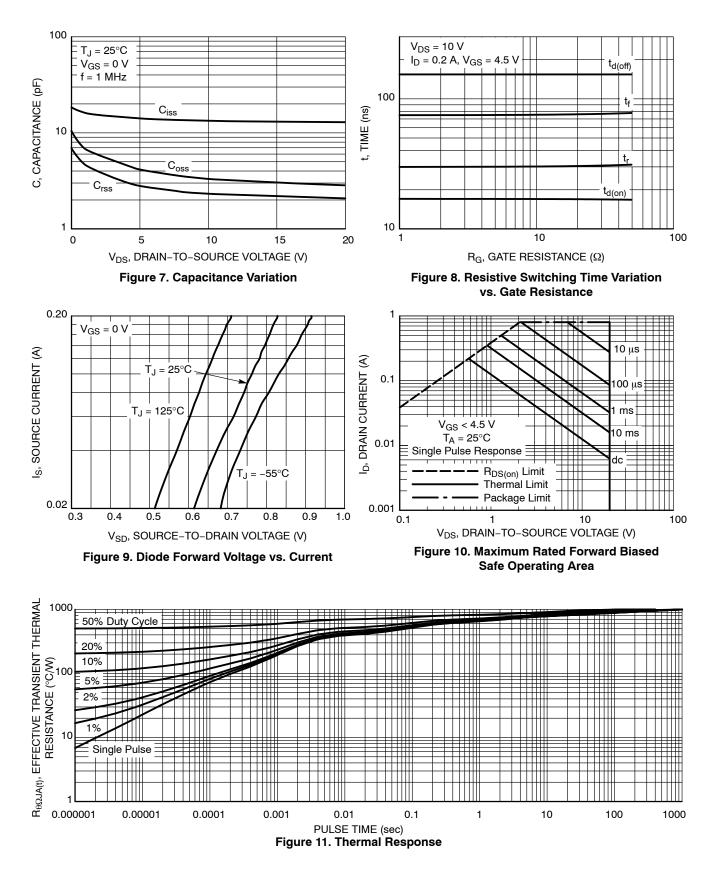
#### THERMAL RESISTANCE RATINGS

| Parameter                                   | Symbol         | Мах | Unit   |  |
|---------------------------------------------|----------------|-----|--------|--|
| Junction-to-Ambient - Steady State (Note 3) |                | 998 | °C /// |  |
| Junction-to-Ambient – t $\leq$ 5 s (Note 3) | $R_{\thetaJA}$ | 751 | °C/W   |  |

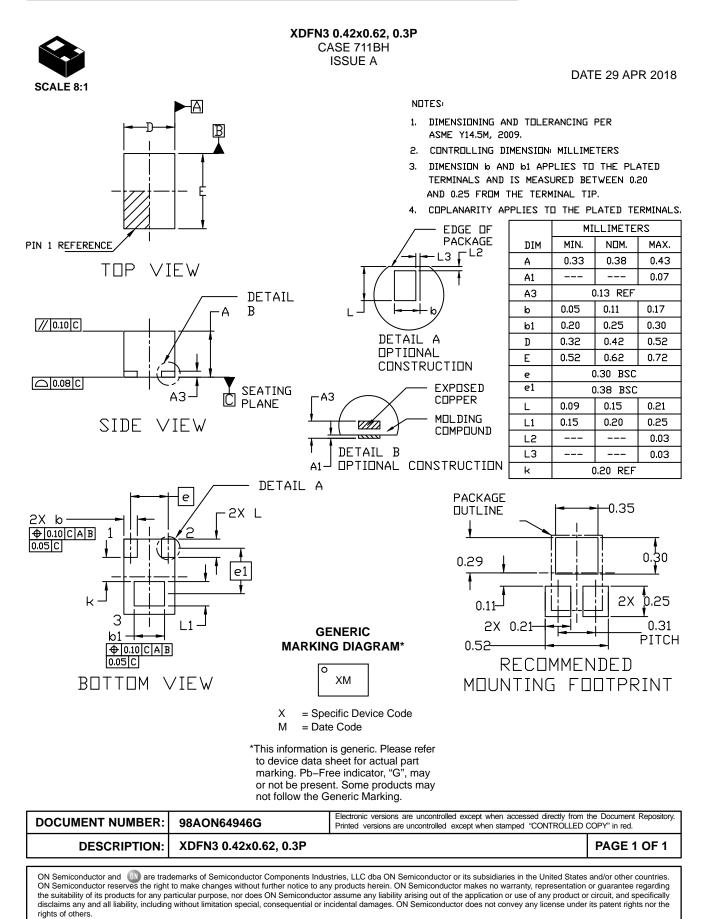
3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm<sup>2</sup>, 1 oz Cu.


#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}C$ unless otherwise stated)

| Parameter                         | Symbol               | Test Conditio                                    | n                          | Min | Тур  | Max  | Unit |
|-----------------------------------|----------------------|--------------------------------------------------|----------------------------|-----|------|------|------|
| OFF CHARACTERISTICS               | •                    |                                                  |                            |     |      |      |      |
| Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub> | $V_{GS}$ = 0 V, $I_D$ = 250 $\mu$ A              |                            | 20  |      |      | V    |
| Zero Gate Voltage Drain Current   | I <sub>DSS</sub>     | $V_{GS} = 0 V, V_{DS} = 5 V$                     | $T_J = 25^{\circ}C$        |     |      | 50   | nA   |
| Zero Gate Voltage Drain Current   | I <sub>DSS</sub>     | $V_{GS} = 0 V, V_{DS} = 16 V$                    | $T_J = 25^{\circ}C$        |     |      | 100  | nA   |
| Gate-to-Source Leakage Current    | I <sub>GSS</sub>     | $V_{DS}$ = 0 V, $V_{GS}$ =                       | ±5 V                       |     |      | ±100 | nA   |
| ON CHARACTERISTICS (Note 4)       |                      | -                                                |                            |     |      |      |      |
| Gate Threshold Voltage            | V <sub>GS(TH)</sub>  | $V_{GS} = V_{DS}, I_D = 2$                       | 50 μΑ                      | 0.4 |      | 1.0  | V    |
| Drain-to-Source On Resistance     | R <sub>DS(on)</sub>  | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 1      | √, I <sub>D</sub> = 100 mA |     | 0.8  | 1.5  | Ω    |
|                                   |                      | V <sub>GS</sub> = 3.3 V, I <sub>D</sub> = 100 mA |                            |     | 1.0  | 1.8  |      |
|                                   |                      | $V_{GS}$ = 2.5 V, I <sub>D</sub> = 50 mA         |                            |     | 1.1  | 2.0  |      |
|                                   |                      | V <sub>GS</sub> = 1.8 V, I <sub>D</sub> = 20 mA  |                            |     | 1.4  | 3.0  |      |
|                                   |                      | V <sub>GS</sub> = 1.5 V, I <sub>D</sub> = 10 mA  |                            |     | 1.8  | 4.5  |      |
| Forward Transconductance          | <b>9</b> FS          | V <sub>DS</sub> = 5 V, I <sub>D</sub> = 125 mA   |                            |     | 0.48 |      | S    |
| Source-Drain Diode Voltage        | V <sub>SD</sub>      | V <sub>GS</sub> = 0 V, I <sub>S</sub> = 10 mA    |                            |     | 0.6  | 1.0  | V    |
| CHARGES & CAPACITANCES            |                      |                                                  |                            |     | •    |      |      |
| Input Capacitance                 | C <sub>ISS</sub>     | $V_{GS}$ = 0 V, freq = 1 MHz, $V_{DS}$ = 15 V    |                            |     | 12.3 |      |      |
| Output Capacitance                | C <sub>OSS</sub>     |                                                  |                            |     | 3.4  |      | pF   |
| Reverse Transfer Capacitance      | C <sub>RSS</sub>     |                                                  |                            |     | 2.5  |      |      |
| SWITCHING CHARACTERISTICS, VGS    | = 4.5 V (Note        | 4)                                               |                            |     | •    | •    | -    |
| Turn–On Delay Time                | t <sub>d(ON)</sub>   |                                                  |                            |     | 16.5 |      |      |
| Rise Time                         | t.                   |                                                  |                            |     | 25.5 |      |      |


| rum on belay nine   | ۲d(ON)              |                                                  | 10.0 |    |
|---------------------|---------------------|--------------------------------------------------|------|----|
| Rise Time           | t <sub>r</sub>      | V <sub>GS</sub> = 4.5 V, V <sub>DD</sub> = 15 V, | 25.5 | 20 |
| Turn-Off Delay Time | t <sub>d(OFF)</sub> | $I_D$ = 200 mA, $R_G$ = 2 $\Omega$               | 142  | ns |
| Fall Time           | t <sub>f</sub>      |                                                  | 80   |    |

4. Switching characteristics are independent of operating junction temperatures


#### **TYPICAL CHARACTERISTICS**



#### **TYPICAL CHARACTERISTICS**







onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. onsemi does not cust performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application or autorized for use as a critical component in life support systems or any CDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any divide for indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and is officers, employees, subsidiaries, and expenses, and expenses, and exponses hard snegges that onsemi was negligent regarding the design or unauthorized use ever if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright have and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### Email Requests to: orderlit@onsemi.com

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 $\Diamond$