

STF150N10F7

N-channel 100 V, 0.0036 Ω typ., 65 A, STripFET[™] F7 Power MOSFET in a TO-220FP package

Figure 1. Internal schematic diagram

Datasheet – production data

Features

Order code	V_{DS}	R _{DS(on)max}	Ι _D	P _{TOT}
STF150N10F7	100 V	0.0042 Ω	65 A	35 W

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET[™] F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1. Device summary

Order code	Marking	Package	Packaging
STF150N10F7 150N10F7		TO-220FP	Tube

August 2014

DocID025818 Rev 2

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history	12

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	100	V
V _{GS}	Gate- source voltage	±20	V
Ι _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	65	А
I _D	Drain current (continuous) at $T_C = 100 \text{ °C}$	45	А
I _{DM} ⁽¹⁾	Drain current (pulsed) T _C = 25 °C	260	А
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	35	W
E _{AS} ⁽²⁾	Single pulse avalanche energy	495	mJ
TJ	Operating junction temperature	-55 to 175	°C
T _{stg}	Storage temperature	-55 10 175	°C

Table 2. Absolute maximum ratings

1. Pulse width is limited by safe operating area

2. Starting T_j =25 °C, ID=30 A, V_{DD} =50 V

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	4.29	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 250 μA	100			V
Zero gate voltage drain current	$V_{GS} = 0, V_{DS} = 100 V$			1	μΑ	
	e e	V _{GS} = 0, V _{DS} = 100 V, T _C =125 °C			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0, V _{GS} = +20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 55 A		0.0036	0.0042	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	8115	-	pF
C _{oss}	Output capacitance	V _{DS} = 50 V, f = 1 MHz,	-	1510	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	67	-	pF
Qg	Total gate charge	V _{DD} = 50 V, I _D = 65 A,	-	117	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	47	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	26	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	33	-	ns
t _r	Rise time	V _{DD} = 50 V, I _D = 55 A, R _G = 4.7 Ω, V _{GS} = 10 V	-	57	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13)	-	72	-	ns
t _f	Fall time		-	33	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		65	Α
$I_{SDM}^{(1)}$	Source-drain current (pulsed)		-		260	А
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 65 \text{ A}, V_{GS} = 0$	-		1.2	V
t _{rr}	Reverse recovery time	I _{SD} = 65 A, di/dt = 100 A/µs	-	70		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 80 V, T _J =150 °C	-	165		nC
I _{RRM}	Reverse recovery current	(see Figure 15)	-	4.7		А

Table 7. Source drain diode

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%.

AM18041v1

tp(s)

AM18043v1

Electrical characteristics (curves) 2.1

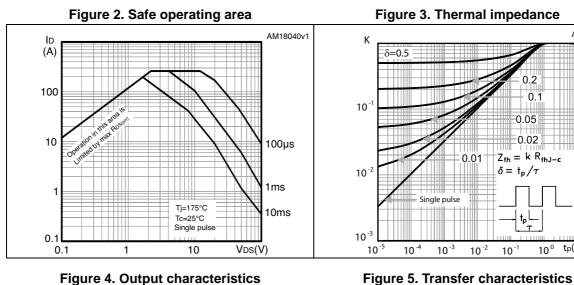
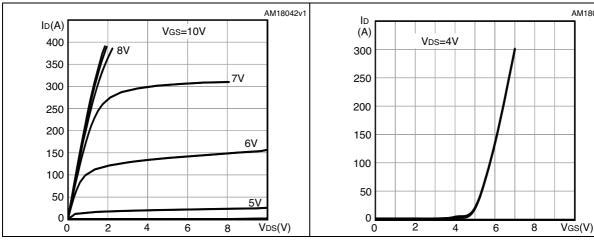



Figure 4. Output characteristics

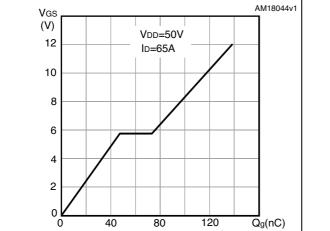
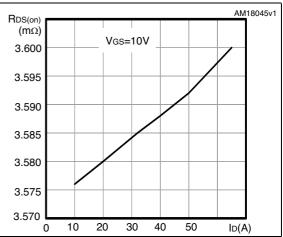



Figure 7. Static drain-source on-resistance

DocID025818 Rev 2

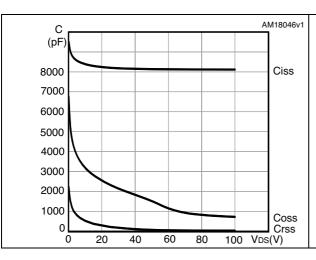


Figure 8. Capacitance variations

Figure 10. Normalized on-resistance vs temperature

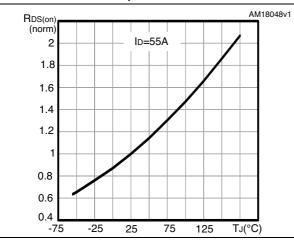
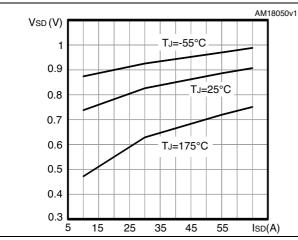
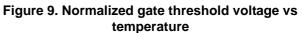




Figure 12. Source-drain diode forward characteristics

DocID025818 Rev 2

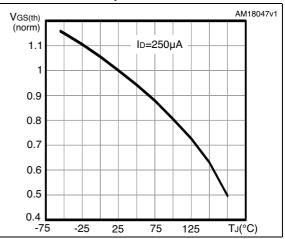
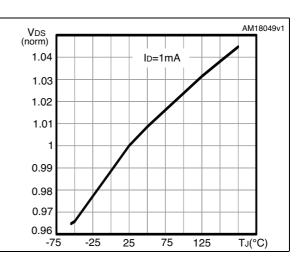



Figure 11. Normalized V_{DS} vs temperature

Test circuits 3

Figure 13. Switching times test circuit for resistive load

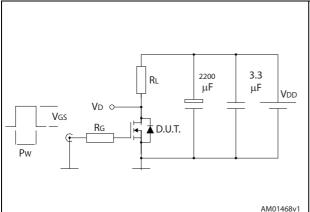


Figure 15. Test circuit for inductive load switching and diode recovery times

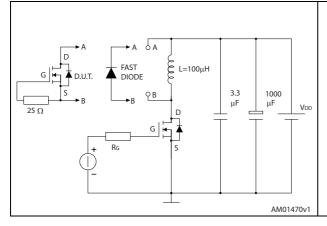


Figure 17. Unclamped inductive waveform

VD

IDM

lр

V(BR)DSS

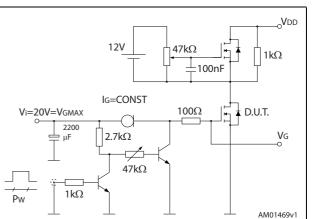
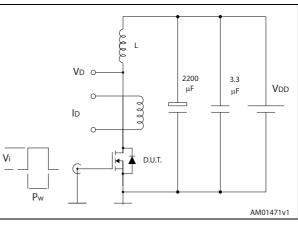
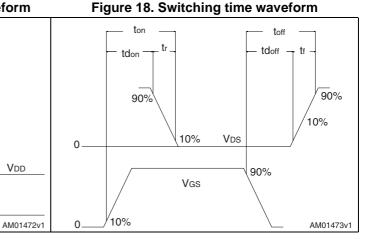




Figure 14. Gate charge test circuit

Vdd

DocID025818 Rev 2

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

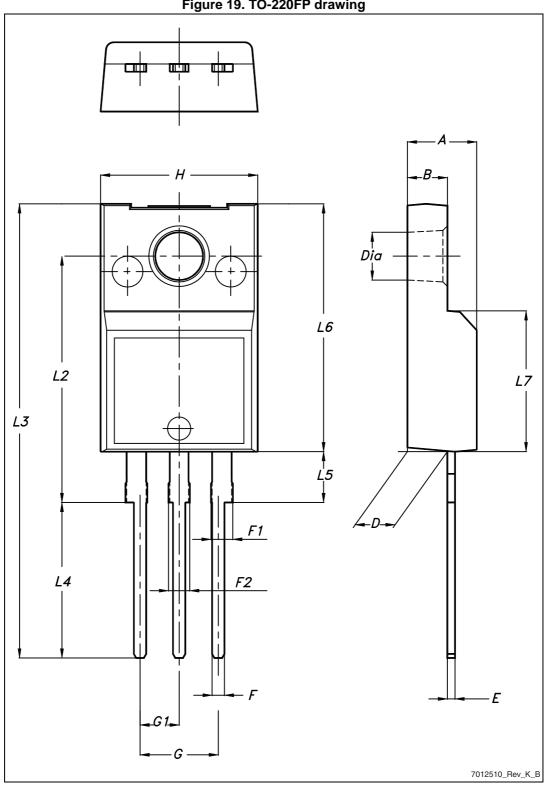


Figure 19. TO-220FP drawing

DocID025818 Rev 2

		20FP mechanical data	
Dim.		mm	
	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 8. TO-220FP mechanical data

5 Revision history

Table 9.	Document	revision	history
----------	----------	----------	---------

Date	Revision	Changes
22-Jan-2014	1	First release.
22-Aug-2014	2	Updated title, features and description in cover page. Updated <i>Figure 3: Thermal impedance</i> .

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

DocID025818 Rev 2