FFSH5065A

Silicon Carbide Schottky

Diode

650 V, 50 A

Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size \& cost.

Features

- Max Junction Temperature $175^{\circ} \mathrm{C}$
- Avalanche Rated 240 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery/No Forward Recovery
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

$\$ Y$	$=$ ON Semiconductor Logo
$\& Z$	$=$ Assembly Plant Code
$\& 3$	$=$ Numeric Date Code
$\& K$	$=$ Lot Code
FFSH5065A	$=$ Specific Device Code

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter		Value	Unit
$\mathrm{V}_{\text {RRM }}$	Peak Repetitive Reverse Voltage		650	V
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy (Note 1)		240	mJ
I_{F}	Continuous Rectified Forward Current @ $\mathrm{T}_{\mathrm{C}}<144^{\circ} \mathrm{C}$		50	A
	Continuous Rectified Forward Current @ $\mathrm{T}_{\mathrm{C}}<135^{\circ} \mathrm{C}$		60	
$\mathrm{I}_{\mathrm{F}, \mathrm{Max}}$	Non-Repetitive Peak Forward Surge Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 10 \mu \mathrm{~s}$	1400	A
		$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}, 10 \mu \mathrm{~s}$	1300	A
IF, SM	Non-Repetitive Forward Surge Current	Half-Sine Pulse, $\mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$	230	A
$\mathrm{I}_{\mathrm{F}, \mathrm{RM}}$	Repetitive Forward Surge Current	Half-Sine Pulse, $\mathrm{t}_{\mathrm{p}}=8.3 \mathrm{~ms}$	120	A
Ptot	Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	429	W
		$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	72	W
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature Range		-55 to +175	${ }^{\circ} \mathrm{C}$
	TO-247 Mounting Torque, M3 Screw		60	Ncm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. E_{AS} of 240 mJ is based on starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=0.5 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=31 \mathrm{~A}, \mathrm{~V}=50 \mathrm{~V}$.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance, Junction to Case, Max	0.35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
V_{F}	Forward Voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	1.51	1.75	V
		$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	1.67	2.0	
		$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~A}, \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	1.82	2.4	
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	200	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	-	-	400	
		$\mathrm{V}_{\mathrm{R}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=175^{\circ} \mathrm{C}$	-	-	600	
Q ${ }_{\text {c }}$	Total Capacitive Charge	$\mathrm{V}=400 \mathrm{~V}$	-	147	-	nC
C	Total Capacitance	$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	2530	-	pF
		$\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	271	-	
		$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	211	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Pulse: Test Pulse width $=300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$.

ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Quantity
FFSH5065A	FFSH5065A	TO-247-2LD (Pb-Free / Halogen Free)	Tube	30 Units

TYPICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 1. Forward Characteristics

Figure 3. Current Derating

Figure 5. Capacitive Charge vs. Reverse Voltage

Figure 2. Reverse Characteristics

Figure 4. Power Derating

Figure 6. Capacitance vs. Reverse Voltage

TYPICAL CHARACTERISTICS

($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 7. Capacitance Stored Energy

Figure 8. Junction-to-Case Transient Thermal Response Curve

FFSH5065A

TEST CIRCUIT AND WAVEFORMS

Figure 9. Unclamped Inductive Switching Test Circuit \& Waveform

