

VN5E016MH-E

16 m Ω high-side driver with analog current sense for automotive applications

Features

Max supply voltage	V _{CC}	41 V
Operating voltage range	V _{CC}	4.5 to 28 V
Max on-state resistance (per ch.)	R _{ON}	16 mΩ
Current limitation (typ)	ILIMH	73 A
Off-state supply current	IS	2 µA ⁽¹⁾

1. Typical value with all loads connected.

- General
 - Inrush current active management by power limitation
 - Very low standby current
 - 3.0 V CMOS compatible inputs
 - Optimized electromagnetic emissions
 - Very low electromagnetic susceptibility
 - In compliance with the 2002/95/EC European directive
- Diagnostic functions
 - Proportional load current sense
 - High current sense precision for wide current range
 - Current sense disable
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation

May 2014

DocID17114 Rev 6

Datasheet - production data

- Self limiting of fast thermal transients
- Protection against loss of ground and loss of V_{CC}
- Overtemperature shutdown with auto restart (thermal shutdown)
- Reverse battery protected
- Electrostatic discharge protection

Applications

- All types of resistive, inductive and capacitive loads
- Suitable as LED driver

Description

The VN5E016MH-E is a single channel high-side driver manufactured in the ST proprietary VIPower[™] M0-5 technology and housed in the tiny HPak package. The VN5E016MH-E is designed to drive 12 V automotive grounded loads delivering protection, diagnostics and easy 3 V and 5 V CMOS compatible interface with any microcontroller.

The device integrates advanced protective functions such as load current limitation, inrush and overload active management by power limitation, overtemperature shut-off with auto restart and overvoltage active clamp.

A dedicated analog current sense pin is associated with every output channel in order to provide enhanced diagnostic functions including fast detection of overload and short-circuit to ground through power limitation indication and overtemperature indication.

The current sensing and diagnostic feedback of the whole device can be disabled by pulling the CS_DIS pin high to allow sharing of the external sense resistor with other similar devices.

Contents

1	Bloc	k diagram and pin description5
2	Elec	trical specifications7
	2.1	Absolute maximum ratings 7
	2.2	Thermal data
	2.3	Electrical characteristics
	2.4	Waveforms
	2.5	Electrical characteristics curves 19
3	Арр	lication information
	3.1	GND protection network against reverse battery
		3.1.1 Solution 1: resistor in the ground line (RGND only) 22
		3.1.2 Solution 2: a diode (DGND) in the ground line
	3.2	Load dump protection 23
	3.3	MCU I/Os protection
	3.4	Current sense and diagnostic 24
	3.5	Maximum demagnetization energy (V _{CC} = 13.5 V)
4	Pacl	kage and PC board thermal data
	4.1	HPak thermal data
5	Pacl	kage and packing information 29
	5.1	ECOPACK [®] packages 29
	5.2	HPak mechanical data
	5.3	HPak packing information
6	Orde	er codes
7	Revi	sion history

List of tables

Table 1.	Pin functions	5
Table 2.	Suggested connections for unused and not connected pins	6
Table 3.	Absolute maximum ratings	7
Table 4.	Thermal data.	
Table 5.	Power section	9
Table 6.	Switching (V _{CC} = 13 V, T _i = 25 °C)	9
Table 7.	Logic inputs	
Table 8.	Protection and diagnostics	0
Table 9.	Current sense (8 V < V _{CC} < 18 V)	1
Table 10.	Truth table	5
Table 11.	Electrical transient requirements (part 1) 10	6
Table 12.	Electrical transient requirements (part 2) 10	6
Table 13.	Electrical transient requirements (part 3) 10	6
Table 14.	Thermal parameter	8
Table 15.	HPak mechanical data	0
Table 16.	Device summary	2
Table 17.	Document revision history	3

List of figures

Figure 1.	Block diagram
Figure 2.	Configuration diagram (top view) not in scale
Figure 3.	Current and voltage conventions7
Figure 4.	Current sense delay characteristics 12
Figure 5.	Switching characteristics
Figure 6.	Output voltage drop limitation
Figure 7.	Delay response time between rising edge of output current and rising edge of current
	sense (CS enabled)
Figure 8.	I _{OUT} /I _{SENSE} vs I _{OUT}
Figure 9.	Maximum current sense ratio drift vs load current
Figure 10.	Normal operation
Figure 11.	Overload or short to GND 17
Figure 12.	Intermittent overload
Figure 13.	T _J evolution in overload or short to GND
Figure 14.	Off-state output current
Figure 15.	High level input current
Figure 16.	Input clamp level
Figure 17.	Input low level
Figure 18.	Input high level
Figure 19.	Input hysteresis voltage
Figure 20.	On-state resistance vs T _{case}
Figure 21.	On-state resistance vs V _{CC}
Figure 22.	Undervoltage shutdown
Figure 23.	Turn-on voltage slope
Figure 24.	I _{LIMH} vs T _{case}
Figure 25.	Turn-off voltage slope
Figure 26.	CS_DIS high level voltage
Figure 27.	CS_DIS clamp voltage
Figure 28.	CS_DIS low level voltage
Figure 29.	Application schematic
Figure 30.	Current sense and diagnostic
Figure 31.	Maximum turn-off current versus inductance
Figure 32.	PC board
Figure 33.	Rthj-amb vs PCB copper area in open box free air condition
Figure 34.	HPak thermal impedance junction ambient single pulse
Figure 35.	Thermal fitting model of a single channel HSD in HPak
Figure 36.	KPak package dimension
Figure 37.	HPak tube shipment (no suffix)
Figure 38.	HPak tape and reel (suffix "TR")

1

Block diagram and pin description

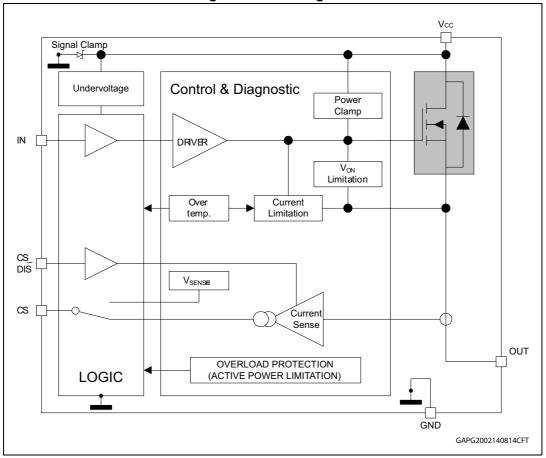


Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection
OUTPUT	Power output ⁽¹⁾
GND	Ground connection
INPUT	Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state
CURRENT SENSE	Analog current sense pin, delivers a current proportional to the load current
CS_DIS	Active high CMOS compatible pin, to disable the current sense pin

1. Pins 1 and 7 must be externally tied together.

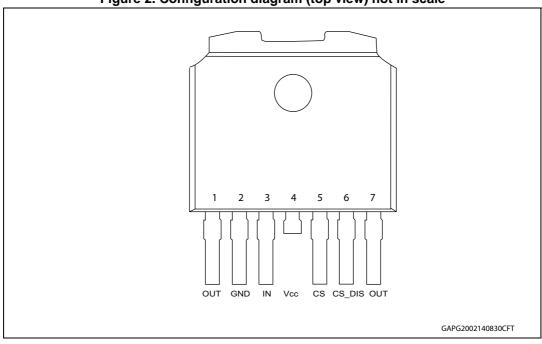


Figure 2. Configuration diagram (top view) not in scale

Table 2. Suggested connections	for unused and	not connected pins
--------------------------------	----------------	--------------------

Connection / pin	Current sense	Output	Input	CS_DIS
Floating	Not allowed	Х	Х	Х
To ground	Through 1 kΩ resistor	Through 22 kΩ resistor	Through 10 kΩ resistor	Through 10 kΩ resistor

2 Electrical specifications

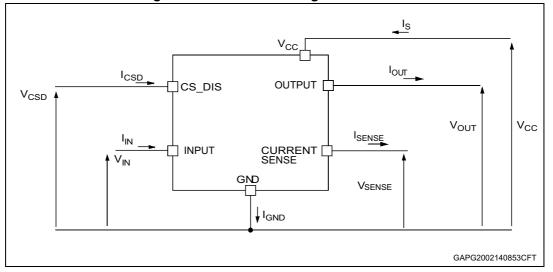


Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse DC supply voltage	0.3	V
I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	DC output current	output current Internally limited	
-I _{OUT}	Reverse DC output current	erse DC output current 20	
I _{IN}	DC input current	-1 to 10	mA
I _{CSD}	DC current sense disable input current	-1 to 10	mA
V _{CSENSE}	Current sense maximum voltage (V _{CC} > 0)	V _{CC} -41 +V _{CC}	V V
E _{MAX}	Maximum switching energy (single pulse) (L = 1.55 mH; R _L = 0 Ω ; V _{bat} = 13.5 V; T _{jstart} = 150 °C; I _{OUT} = I _{limL} (Typ.))	350	mJ

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
	Electrostatic discharge (human body model: R = 1.5 K Ω ; C = 100 pF)		
	– Input	4000	V
V_{ESD}	 Current sense 	2000	V
	– CS_DIS	4000	V
	– Output	5000	V
	- V _{CC}	5000	V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Тj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	°C

Table 3. Absolute maximum ratings (continued)

2.2 Thermal data

Symbol	Parameter	Max. value	Unit
R _{thj-case}	Thermal resistance junction-case	0.63	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	69.3	°C/W

2.3 Electrical characteristics

Values specified in this section are for 8 V < V_{CC} < 28 V, -40 °C < T_j < 150 °C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4.5	13	28	V
V _{USD}	Undervoltage shutdown			3.5	4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
		I _{OUT} = 5 A; T _j = 25 °C			16	mΩ
R _{ON}	On-state resistance	I _{OUT} = 5 A; T _j = 150 °C			32	mΩ
		$I_{OUT} = 5 \text{ A}; V_{CC} = 5 \text{ V}; T_j = 25 \text{ °C}$			20	mΩ
V _F	Output - V _{CC} diode voltage	-I _{OUT} = 5 A; T _j = 150 °C			0.7	V
V _{clamp}	Clamp voltage	I _{CC} = 20 mA; I _{OUT} = 0 A	41	46	52	V
I _S	Supply ourront	Off-state; $V_{CC} = 13 \text{ V}$; $T_j = 25 \text{ °C}$; $V_{IN} = V_{OUT} = V_{SENSE} = 0 \text{ V}$		2	5	μA
	Supply current	On-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = 5 \text{ V}$; $I_{OUT} = 0 \text{ A}$		1.5	3	mA
I _{L(off1)}		$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V;$ $T_j = 25 °C$	0	0.01	3	μA
	Off-state output current	$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V;$ T _j = 125 °C	0		5	μA

Table	5.	Power	section
-------	----	-------	---------

Table 6. Switching (V_{CC} = 13 V, T_j = 25 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 2.6 \Omega$ (see <i>Figure 5</i>)	—	15		μs
t _{d(off)}	Turn-off delay time	$R_L = 2.6 \Omega$ (see <i>Figure 5</i>)	—	45		μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	$R_L = 2.6 \Omega$	—	0.2		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$R_L = 2.6 \Omega$	—	0.2	_	V/µs
W _{ON}	Switching energy losses at turn-on (t _{won})	$R_L = 2.6 \Omega$ (see <i>Figure 5</i>)	_	1.4	_	mJ
W _{OFF}	Switching energy losses at turn-off (t _{won})	R_L = 2.6 Ω (see <i>Figure 5</i>)	_	0.8	_	mJ

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				0.9	V
۱ _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{IH}	Input high level voltage		2.1			V
Ι _{ΙΗ}	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.25			V
M		I _{IN} = 1 mA	5.5		7	V
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
V _{CSDL}	CS_DIS low level voltage				0.9	V
I _{CSDL}	Low level CS_DIS current	V _{CSD} = 0.9 V	1			μΑ
V _{CSDH}	CS_DIS high level voltage		2.1			V
I _{CSDH}	High level CS_DIS current	V _{CSD} = 2.1 V			10	μA
V _{CSD(hy} st)	CS_DIS hysteresis voltage		0.25			V
Maria	CS_DIS clamp voltage	I _{CSD} = 1 mA	5.5		7	V
V _{CSCL}	US_UIS clamp vollage	I _{CSD} = -1 mA		-0.7		V

Table 7. Logic inputs

Table 8. Protection and diagnostics ⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
1	Short circuit current	V _{CC} = 13 V	54	73	108	Α
I _{limH}	Short circuit current	5 V < V _{CC} < 28 V			108	Α
I _{limL}	Short circuit current during thermal cycling	V _{CC} = 13 V; T _R < T _j < T _{TSD}		18		A
T _{TSD}	Shutdown temperature		150	175	200	°C
Τ _R	Reset temperature		T _{RS} + 1	T _{RS} + 5		°C
T _{RS}	Thermal reset of status		135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} - T _R)			7		°C
V _{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 2 A; V _{IN} = 0; L = 6 mH	V _{CC} -41	V _{CC} -46	V _{CC} -52	V
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.5 A; T _j = -40 °C to 150 °C		25		mV

 To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Symbol	Parameter	Irrent sense (8 V < V _{CC} < 18 V Test conditions	, Min.	Тур.	Max.	Unit
κ ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; T _j = -40 °C to 150 °C	2836	6200	10444	
K ₁	I _{OUT} /I _{SENSE}	$I_{OUT} = 5 \text{ A}; V_{SENSE} = 0.5 \text{ V};$ $T_j = -40 \text{ °C to } 150 \text{ °C}$ $T_j = 25 \text{ °C to } 150 \text{ °C}$	4306 4358	5200 5200	7004 6106	
dK ₁ /K ₁ ⁽¹⁾	Current sense ratio drift	I _{OUT} = 5 A; V _{SENSE} = 0.5 V; V _{CSD} = 0 V; T _j = -40 °C to 150 °C	- 11		+ 11	%
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 10 A; V _{SENSE} = 4 V; T _j = -40 °C to 150 °C T _j = 25 °C to 150 °C	4608 4501	5040 5040	5926 5502	
dK ₂ /K ₂ ⁽¹⁾	Current sense ratio drift	I _{OUT} =10 A; V _{SENSE} = 4 V; V _{CSD} = 0 V; T _j = -40 °C to 150 °C	- 8		+ 8	%
K ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 25 A; V _{SENSE} = 4 V; T _j = -40 °C to 150 °C T _j = 25 °C to 150 °C	4612 4566	4930 4930	5367 5168	
dK ₃ /K ₃ ⁽¹⁾	Current sense ratio drift	I _{OUT} = 25 A; V _{SENSE} = 4 V; V _{CSD} = 0 V; T _j = -40 °C to 150 °C	- 4		+ 4	%
		$I_{OUT} = 0 \text{ A}; \text{ V}_{SENSE} = 0 \text{ V};$ $V_{CSD} = 5 \text{ V}; \text{ V}_{IN} = 0 \text{ V};$ $T_j = -40 \text{ °C to } 150 \text{ °C}$	0		1	μA
I _{SENSE0}	Analog sense leakage current	$V_{CSD} = 0 V; V_{IN} = 5 V;$ T _j = -40 °C to 150 °C	0		2	μA
		$I_{OUT} = 2 \text{ A}; \text{ V}_{SENSE} = 0 \text{ V};$ $V_{CSD} = 5 \text{ V}; \text{ V}_{IN} = 5 \text{ V};$ $T_j = -40 \text{ °C to } 150 \text{ °C}$			1	μA
I _{OL}	Openload ON-state current detection threshold	V _{IN} = 5 V; I _{SENSE} = 5 μΑ	5		70	mA
V _{SENSE}	Max analog sense output voltage	l _{OUT} =18 A; R _{SENSE} = 3.9 KΩ	5			V
V _{SENSEH} ⁽²⁾	Analog sense output voltage in fault condition	V _{CC} = 13V; R _{SENSE} = 3.9 KΩ		8		V
I _{SENSEH} ⁽²⁾	Analog sense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V		9		mA
^t DSENSE1H	Delay response time from falling edge of CS_DIS pin	V _{SENSE} < 4 V; 1.5 A < I _{OUT} < 25 A; I _{SENSE} = 90 % of I _{SENSE max} (see <i>Figure 4</i>)		50	100	μs
t _{DSENSE1L}	Delay response time from rising edge of CS_DIS pin	V _{SENSE} < 4 V; 1.5 A < I _{OUT} < 25 A; I _{SENSE} = 10 % of I _{SENSE max} (see <i>Figure 4</i>)		5	20	μs

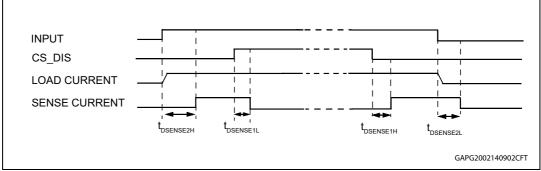
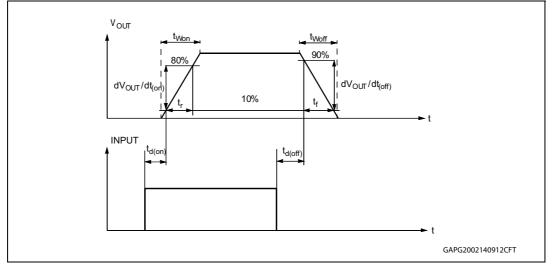
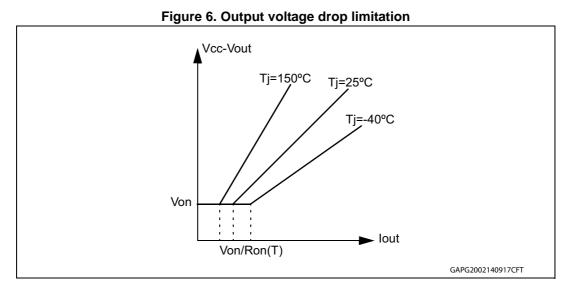
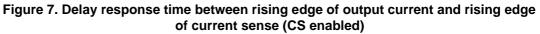
Table 9. Current sense (8 V < V_{CC} < 18 V)

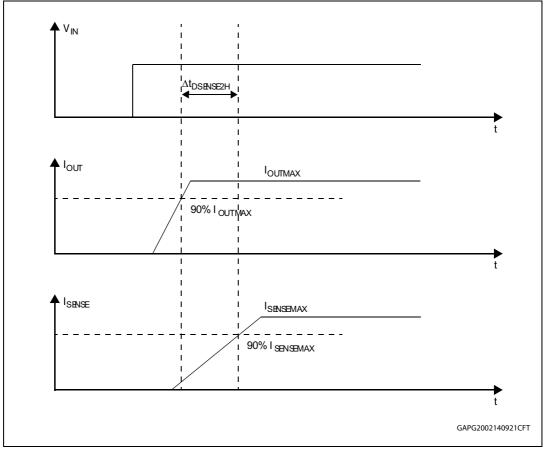
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{DSENSE2H}	Delay response time from rising edge of INPUT pin	V _{SENSE} < 4 V; 1.5 A < I _{OUT} < 25 A; I _{SENSE} = 90 % of I _{SENSE max} (see <i>Figure 4</i>)		270	600	μs
$\Delta t_{DSENSE2H}$	Delay response time between rising edge of output current and rising edge of current sense	V _{SENSE} < 4V; I _{SENSE} = 90 % of I _{SENSEMAX} ; I _{OUT} = 90 % of I _{OUTMAX} ; I _{OUTMAX} = 3 A (see <i>Figure 7</i>)			280	μs
t _{DSENSE2L}	Delay response time from falling edge of INPUT pin	V _{SENSE} < 4 V; 1.5 A < I _{OUT} < 25 A; I _{SENSE} = 10 % of I _{SENSE max} (see <i>Figure 4</i>)		100	250	μs

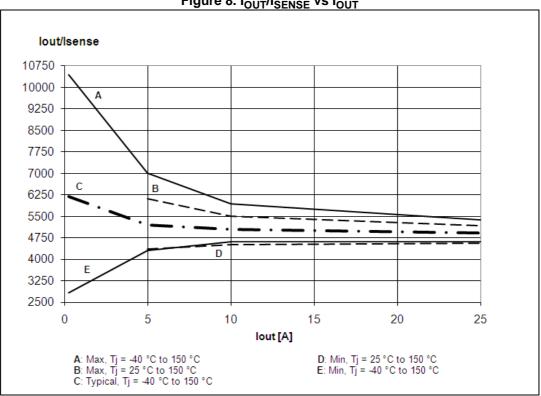
Table 9. Current sense (8 V < Vac < 18 V	(continued)
		, (0011011000)

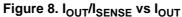
1. Parameter guaranteed by design, it is not tested.

2. Fault condition includes: power limitation and overtemperature.

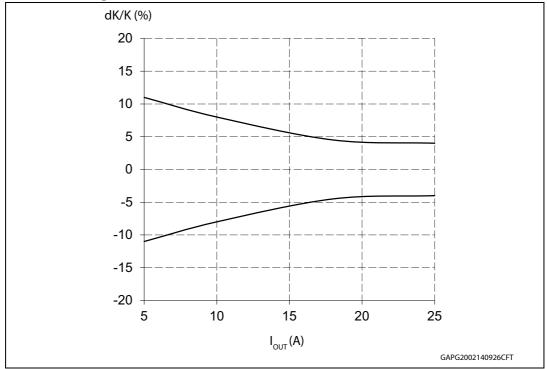






Figure 5. Switching characteristics









1. Parameter guaranteed by design; it is not tested.

Conditions	Input	Output	Sense (V _{CSD} = 0 V) ⁽¹⁾		
Normal operation	L	L	0		
	Н	Н	Nominal		
Quartemperature	L	L	0		
Overtemperature	Н	L	V _{SENSEH}		
Lindon voltogo	L	L	0		
Undervoltage	Н	L	0		
	Н	Х	Nominal		
Overload		(no power limitation)			
Ovendad	Н	Cycling	V _{SENSEH}		
		(power limitation)			
Short circuit to GND (power	L	L	0		
limitation)	Н	L	V _{SENSEH}		
Negative output voltage clamp	L	L	0		

 If the V_{CSD} is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

ISO 7637-2: 2004(E)	Test I	levels	Number of Burst cycle / pul		Burst cycle / nulse		Delays and
Test pulse	ш	IV	pulses or test times	s or repetition time impeda		impedance	
1	-75 V	-100 V	5000 pulses	0.5 s	5 s	2 ms, 10 Ω	
2a	+37 V	+50 V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω	
3a	-100 V	-150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	+75 V	+100 V	1h	90 ms	100 ms	0.1µs, 50 Ω	
4	-6 V	-7 V	1 pulse			100 ms, 0.01Ω	
5b ⁽¹⁾	+65 V	+87 V	1 pulse			400 ms, 2 Ω	

Table 11. Electrical transient requirements (part 1)

1. Valid in case of external load dump clamp: 40 V maximum referred to ground.

Table 12. Electrical transient requirements	(part 2)
---	----------

ISO 7637-2:	Test level	results ⁽¹⁾
2004(E) Test pulse	Ш	IV
1	С	С
2a	С	С
3a	С	С
3b	С	С
4	С	С
5b ⁽²⁾	С	С

1. The above test levels must be considered referred to V_{CC} = 13.5 V except for pulse 5b

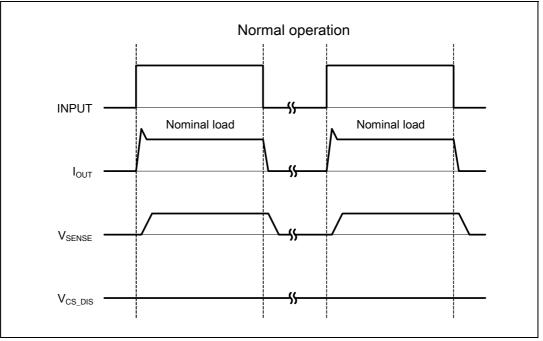
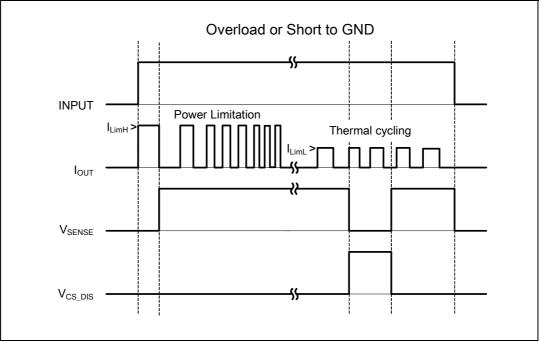
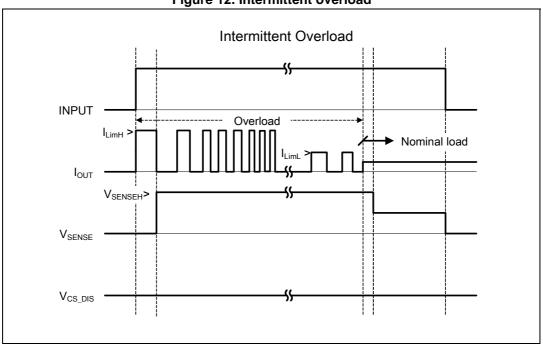

2. Valid in case of external load dump clamp: 40 V maximum referred to ground.

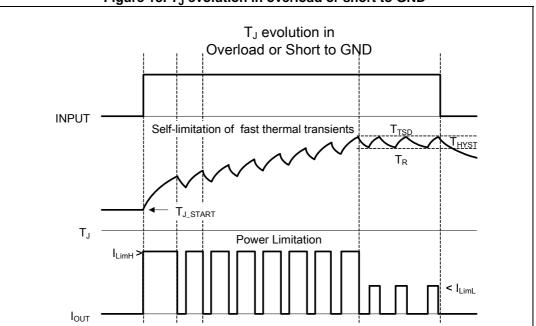
Table 13. Electrical transient	requirements (part 3)
--------------------------------	-----------------------

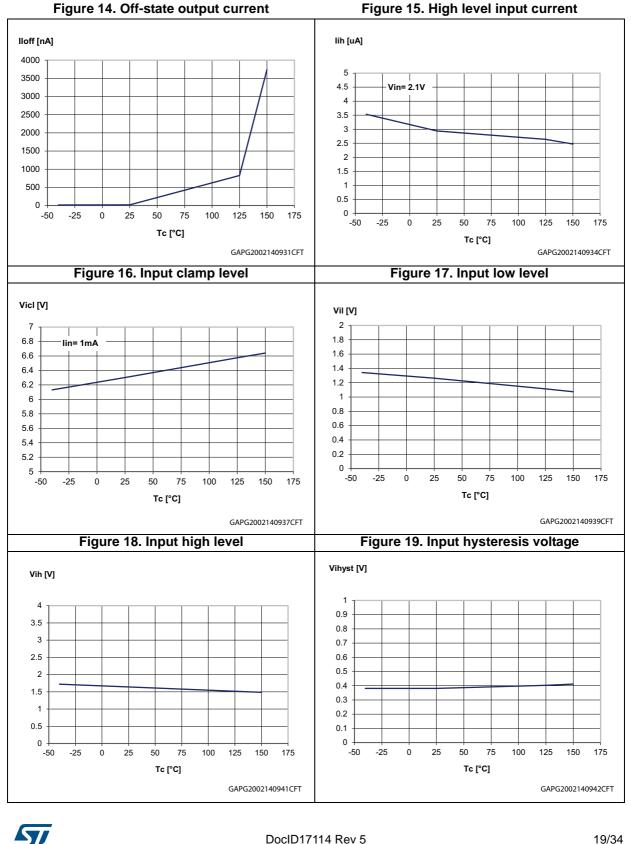

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

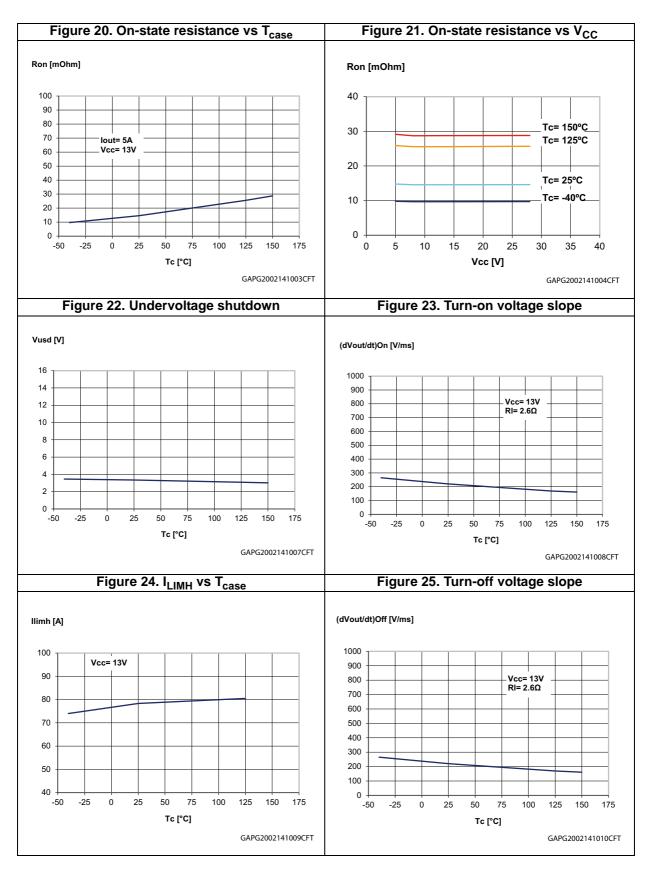


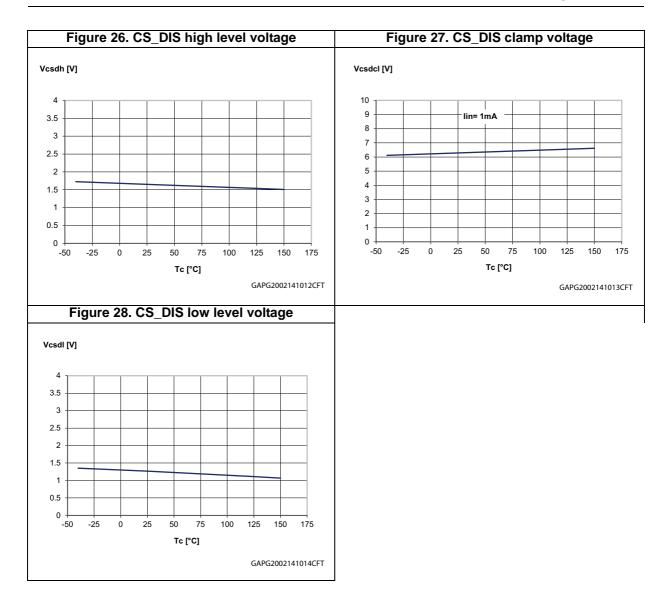
2.4 Waveforms










2.5 **Electrical characteristics curves**

DocID17114 Rev 5

3 Application information

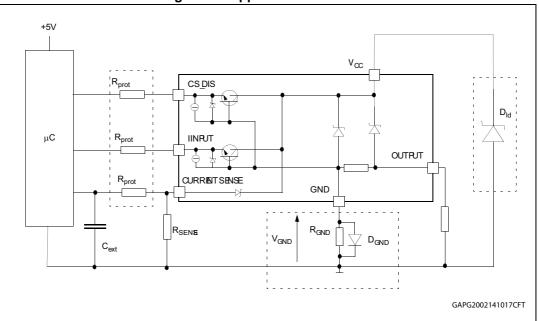


Figure 29. Application schematic

3.1 GND protection network against reverse battery

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to set the dimension of R_{GND} resistor.

1) $R_{GND} \leq 600 \text{ mV} / (I_{S(on)max})$.

2) $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{GND}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in R_{GND} (when $V_{CC} < 0$: during reverse battery situations) is:

Equation 1

 $P_{\rm D} = (-V_{\rm CC})^2 / R_{\rm GND}$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize Solution 2 (see below).

3.1.2 Solution 2: a diode (D_{GND}) in the ground line

A resistor (R_{GND} = 1 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift not varies if more than one HSD shares the same diode/resistor network.

3.2 Load dump protection

 D_{Id} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO T/R 7637/1 table.

3.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins are pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the MCU I/O pins from latching-up.

The value of these resistors is a compromise between the leakage current of MCU and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of MCU I/Os.

Equation 2

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

$$\begin{split} \text{For } V_{CCpeak} \text{= - } 100 \text{ V and } I_{latchup} \geq 20 \text{ mA}; \text{ } V_{OH\mu C} \geq 4.5 \text{ V} \\ 5 \text{ } k\Omega \leq R_{prot} \leq 65 \text{ } k\Omega. \end{split}$$

Recommended values: R_{prot} =10 kΩ, C_{EXT}=10 nF.

3.4 Current sense and diagnostic

The current sense pin performs a double function (see *Figure 30: Current sense and diagnostic*):

- **Current mirror of the load current in normal operation**, delivering a current proportional to the load according to a known ratio K_X . The current I_{SENSE} can be easily converted into a voltage V_{SENSE} by means of an external resistor R_{SENSE}. Linearity between I_{OUT} and V_{SENSE} is ensured up to 5V minimum (see parameter V_{SENSE} in *Table 9: Current sense (8 V < VCC < 18 V)*). The current sense accuracy depends on the output current (refer to current sense electrical characteristics *Table 9: Current sense (8 V < VCC < 18 V)*).
- Diagnostic flag in fault conditions, delivering a fixed voltage V_{SENSEH} up to a maximum current I_{SENSEH} in case of the following fault conditions (refer to *Table 10*):
 - Power limitation activation
 - Overtemperature

A logic level high on CS_DIS pin sets at the same time all the current sense pins of the device in a high impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices.

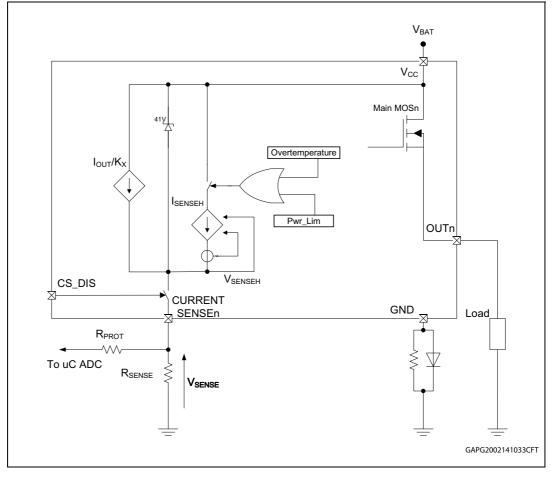


Figure 30. Current sense and diagnostic

DocID17114 Rev 5

3.5 Maximum demagnetization energy ($V_{CC} = 13.5 V$)

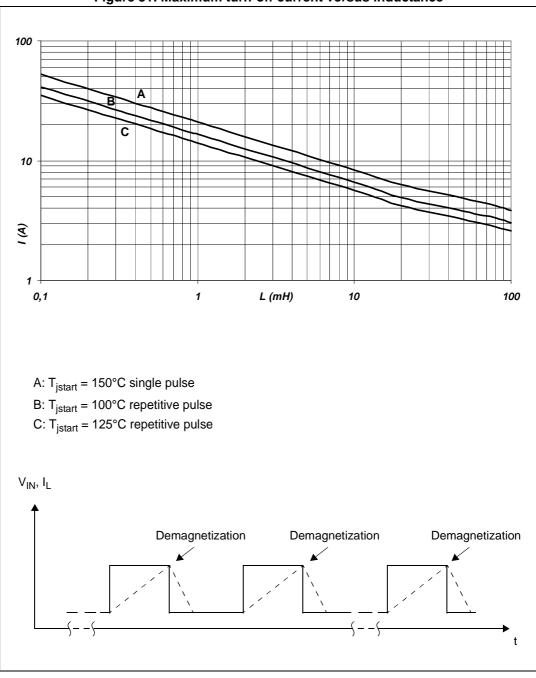


Figure 31. Maximum turn-off current versus inductance

1. Values are generated with R_L = 0 Ω . In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

4 Package and PC board thermal data

4.1 HPak thermal data

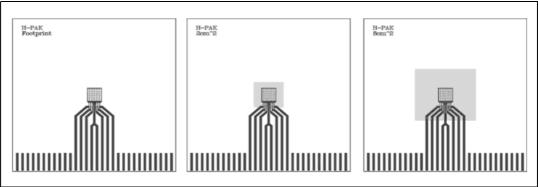
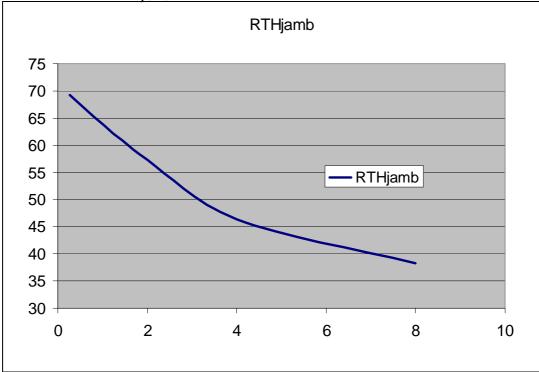



Figure 32. PC board

 Layout condition of Rth and Zth measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 1.8 mm, Cu thickness = 70 μm, Copper areas: from minimum pad lay-out to 8 cm²).

Figure 33. R_{thj-amb} vs PCB copper area in open box free air condition

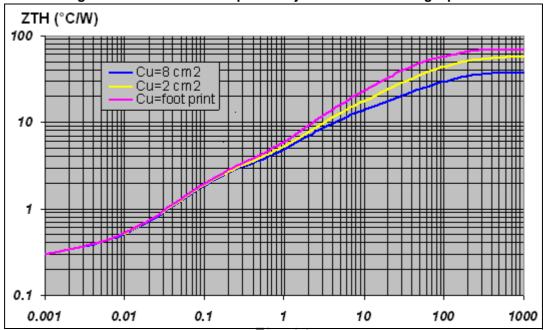
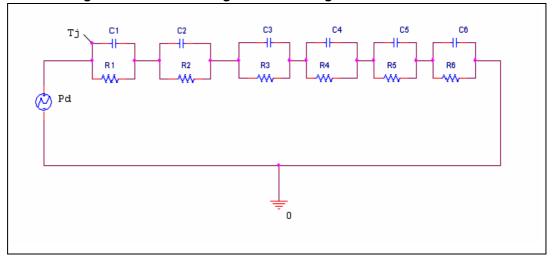
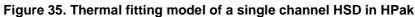




Figure 34. HPak thermal impedance junction ambient single pulse

Equation 3: pulse calculation formula:

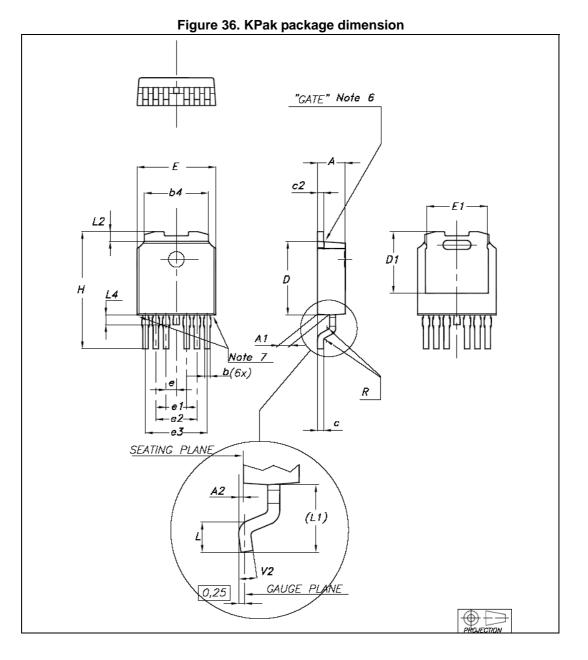
$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1-\delta) \\ \text{where} \quad \delta &= t_p / T \end{split}$$

1. The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Area/island (cm ²)	Footprint	4	8
R1 (°C/W)	0.1	-	-
R2 (°C/W)	0.2	-	-
R3 (°C/W)	2	-	-
R4 (°C/W)	8	-	-
R5 (°C/W)	28	22	12
R6 (°C/W)	31	25	16
C1 (W.s/°C)	0.0001	-	-
C2 (W.s/°C)	0.002	-	-
C3 (W.s/°C)	0.05	-	-
C4 (W.s/°C)	0.4	-	-
C5 (W.s/°C)	0.8	1.4	3
C6 (W.s/°C)	3	6	9

Table 14. Thermal parameter

28/34

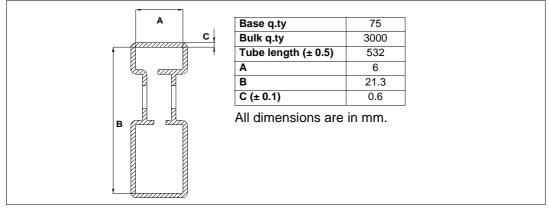


5 Package and packing information

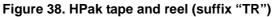
5.1 ECOPACK[®] packages

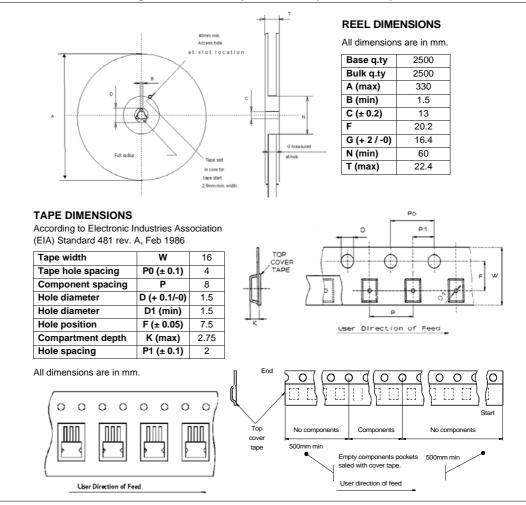
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

5.2 HPak mechanical data



		Data book mm		
Ref. dim –	Nom.	Min.	Max.	
А		2.20	2.40	
A1		0.90	1.10	
A2		0.03	0.23	
b		0.45	0.60	
b4		5.20	5.40	
с		0.45	0.60	
c2		0.48	0.60	
D		6.00	6.20	
D1	5.10			
E		6.40	6.60	
E1	5.20			
е	0.85			
e1		1.60	1.80	
e2		3.30	3.50	
e3		5.00	5.20	
н		9.35	10.10	
L		1		
(L1)	2.80			
L2	0.80			
L4		0.60	1.00	
R	0.20			
V2		0°	8°	




5.3 HPak packing information

The devices can be packed in tube or tape and reel shipments (see *Table 16: Device summary*).

Figure 37. HPak tube shipment (no suffix)

6 Order codes

Paakaga	Order codes	
Package	Tube	Tape and reel
7 pins H-pack	Root part number 1	VN5E016MHTR-E

Table 16. Device summary

32/34

7 Revision history

Date	Revision	Changes
29-Jun-2010	1	Initial release.
30-Jun-2010	2	Changed status from target specification to preliminary data.
29-Jul-2010	3	Table 9: Current sense (8 V < VCC < 18 V):- Updated K1 maximun value for T _j = 25 °C150 °C
04-Aug-2010	4	Table 9: Current sense (8 V < VCC < 18 V):- Updated K1, K2 and K3 typical values for $T_j = -40 \text{ °C}150 \text{ °C}$ - Updated dK1/K1 test conditionsUpdated Figure 8: IOUT/ISENSE vs IOUT.
19-Feb-2014	5	Changed document status from "Preliminary data" to "Production data"
07-May-2014	6	Updated Figure 2: Configuration diagram (top view) not in scale

Table 17. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

34/34

