

Very low drop voltage regulators with inhibit

Features

- Very low dropout voltage (0.4 V)
- Very low quiescent current (typ. 50 μA in OFF Mode, 500 μA in ON Mode)
- Output current up to 500 mA
- Logic-controlled electronic shutdown
- Output voltages of 1.5; 2.5; 3; 3.3; 4; 5; 5.2; 6; 8
- Internal current and thermal limit
- Only 2.2 µF for stability
- Available in ± 2 % accuracy at 25 °C
- Supply voltage rejection: 70 db (typ.)
- Temperature range: -40 to 125 °C

Description

The KFxx series are very low drop regulators available in SO-8 package and in a wide range of output voltages.

The very low drop voltage (0.4 V) and the very low quiescent current make them particularly

suitable for low noise, low power applications and specially in battery powered systems.

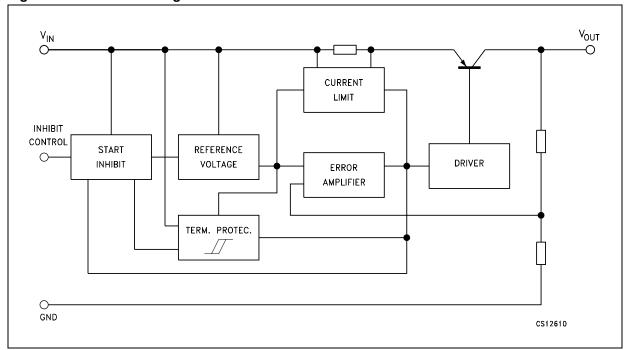
A shutdown logic control function is available (pin 5, TTL compatible). This means that when the device is used as a local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. It requires only a 2.2 μ F capacitor for stability allowing space and cost saving.

Table 1. Device summary

Part n	umbers
KF15B	KF40B
KF25B	KF50B
KF30B	KF52B
KF33B	KF80B

December 2007 Rev 10 1/22

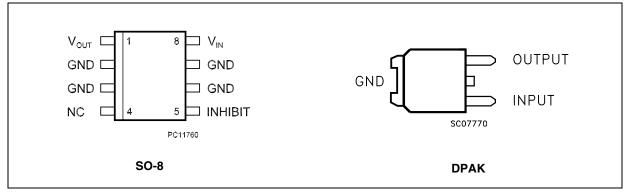
Contents


Contents

1	Diagram	. 3
2	Pin configuration	. 4
3	Maximum ratings	. 5
4	Electrical characteristics	. 6
5	Typical performance characteristics	14
6	Package mechanical data	15
7	Order codes	20
R	Revision history	21

KFxxB Diagram

1 Diagram


Figure 1. Schematic diagram

Pin configuration KFxxB

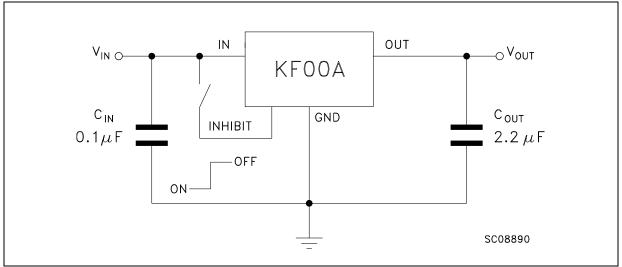
2 Pin configuration

Figure 2. Pin connections (top view)

KFxxB Maximum ratings

3 Maximum ratings

 Table 2.
 Absolute maximum ratings


Symbol	Parameter	Value	Unit
VI	DC input voltage	-0.5 to 20	V
I _O	Output current	Internally Limited	
P _{TOT}	Power dissipation	Internally Limited	
T _{STG}	T _{STG} Storage temperature range -40 to 150		°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	DPAK	SO-8	Unit
R_{thJC}	Thermal resistance junction-case	8	20	°C/W

Figure 3. Test circuit

Electrical characteristics KFxxB

4 Electrical characteristics

Table 4. Electrical characteristics for KF15 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
\/	Output valtage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$		1.47	1.5	1.53	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	-25 to 85°C	1.44		1.56	V
VI	Operating input voltage	I _O = 500 mA	I _O = 500 mA			20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 2.5 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_{I} = 2.8 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$	ı		2	50	mV
		$V_{I} = 2.5 \text{ to } 20V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	m 1
I_{d}	Quiescent current	$V_{I} = 2.8 \text{ to } 20V, I_{O} = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz	•		50		μV
V_d	Dropout voltage	I _O = 200 mA			1		V
V_{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V_{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$					V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 5. Electrical characteristics for KF25 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	I _O = 50 mA, V _I = 4.5 V		2.45	2.5	2.55	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	= -25 to 85°C	2.4		2.6	V
VI	Operating input voltage	I _O = 500 mA	I _O = 500 mA			20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 3.5 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_1 = 3.8 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		2	50	mV
		$V_1 = 3.5 \text{ to } 20V, I_0 = 0\text{mA}$	ON MODE		0.5	1	Л
I_d	Quiescent current	$V_1 = 3.8 \text{ to } 20V, I_0 = 500\text{mA}$	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
		f = 120 F			82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz	1		50		μV
	Donastick	I _O = 200 mA			0.2	0.35	\ /
V_d	Dropout voltage	I _O = 500 mA	I _O = 500 mA		0.4	0.7	V
V_{IL}	Control input logic low	T _a = -40 to 125°C				0.8	٧
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			٧
l _l	Control input current	V _I = 6 V, V _C = 6 V			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Electrical characteristics KFxxB

Table 6. Electrical characteristics for KF30 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
V.	Output voltage	I _O = 50 mA, V _I = 5 V		2.94	3	3.06	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 5 \text{ V}, T_a = -$	25 to 85°C	2.88		3.12	v
V _I	Operating input voltage	I _O = 500 mA	I _O = 500 mA			20	V
Io	Output current limit				1		Α
ΔV _O	Line regulation	$V_1 = 4 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV
ΔV _O	Load regulation	$V_1 = 4.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	ı		2	50	mV
		V _I = 4 to 20V, I _O = 0mA	ON MODE		0.5	1	Л
I_d	Quiescent current	$V_1 = 4.3 \text{ to } 20V, I_0 = 500\text{mA}$ ON MODE	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
			f = 120 Hz		81		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 5 \pm 1 \text{ V}$	f = 1 kHz		76		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV
M	Dranavitualtaria	I _O = 200 mA			0.2	0.35	V
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 7. Electrical characteristics for KF33 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
\/	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$		3.234	3.3	3.366	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$	25 to 85°C	3.168		3.432	V
V _I	Operating input voltage	I _O = 500 mA	I _O = 500 mA			20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_1 = 4.6 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	Ĺ		2	50	mV
		$V_{I} = 4.3 \text{ to } 20V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	Л
I_{d}	Quiescent current	V _I = 4.6 to 20V, I _O =500mA	ON WODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
	f = -		f = 120 Hz		80		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV
V	Dranautwaltana	I _O = 200 mA			0.2	0.35	V
V_d	Dropout voltage I _O = 500 mA		0.4	0.7	V		
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	٧
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

<u>577</u>

Electrical characteristics KFxxB

Table 8. Electrical characteristics for KF40 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
V.	Output voltage	I _O = 50 mA, V _I = 6 V		3.92	4	4.08	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 6 \text{ V}, T_a = -$	25 to 85°C	3.84		4.16	v
VI	Operating input voltage	I _O = 500 mA	I _O = 500 mA			20	V
Io	Output current limit				1		Α
ΔV _O	Line regulation	$V_1 = 5 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			3	18	mV
ΔV _O	Load regulation	$V_1 = 5.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	ı		2	50	mV
		V _I = 5 to 20V, I _O = 0mA	ON MODE		0.5	1	Л
I_{d}	Quiescent current	$V_1 = 5.3 \text{ to } 20V, I_0 = 500\text{mA}$ ON MODE	ON MODE			12	mA
		V _I = 6 V	OFF MODE		50	100	μΑ
			f = 120 Hz		78		
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}, V_1 = 6 \pm 1 \text{ V}$	f = 1 kHz		73		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV
M	Dranavitualtaria	I _O = 200 mA			0.2	0.35	V
V_d	Dropout voltage I _O = 500 mA		0.4	0.7	V		
V_{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

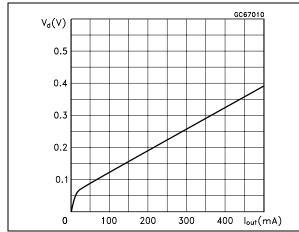
Table 9. Electrical characteristics for KF50 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
V.	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}$		4.9	5	5.1	V	
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}, T_a = -$	25 to 85°C	4.8		5.2	V	
VI	Operating input voltage	I _O = 500 mA	I _O = 500 mA			20	V	
Io	Output current limit				1		Α	
ΔV_{O}	Line regulation	V _I = 6 to 20 V, I _O = 5 mA			3	18	mV	
ΔV_{O}	Load regulation	$V_1 = 6.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		2	50	mV	
		V _I = 6 to 20V, I _O = 0mA	ON MODE		0.5	1	Л	
I_d	Quiescent current	$V_1 = 6.3 \text{ to } 20V, I_0 = 500 \text{mA}$	ON WODE			12	mA	
		V _I = 6 V	OFF MODE		50	100	μΑ	
			f = 120 Hz		76			
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB	
			f = 10 kHz		60			
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV	
\/	Duanautwaltana	I _O = 200 mA			0.2	0.35	V	
V_d	Dropout voltage	I _O = 500 mA	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V	
V _{IH}	Control input logic high	T _a = -40 to 125°C	T _a = -40 to 125°C				V	
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF	

Electrical characteristics KFxxB

Table 10. Electrical characteristics for KF52 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 7.2 \text{ V}$		5.096	5.2	5.304	V	
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 7.2 \text{ V}, T_a = 0.0 \text{ mA}$	= -25 to 85°C	4.992		5.408	V	
VI	Operating input voltage	I _O = 500 mA				20	V	
Ιο	Output current limit				1		Α	
ΔV _O	Line regulation	$V_{I} = 6.2 \text{ to } 20 \text{ V}, I_{O} = 5 \text{ mA}$			3	18	mV	
ΔV _O	Load regulation	$V_1 = 6.5 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		2	50	mV	
		$V_{I} = 6.2 \text{ to } 20V, I_{O} = 0\text{mA}$	ONLMODE		0.5	1	А	
I_d	Quiescent current	$V_{I} = 6.5 \text{ to } 20V, I_{O} = 500 \text{mA}$	ON WODE	.5 to 20V, I _O =500mA			12	mA
		V _I = 6 V	OFF MODE		50	100	μA	
			f = 120 Hz		76			
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}, V_1 = 7.2 \pm 1 \text{ V}$	f = 1 kHz		71		dB	
			f = 10 kHz		60			
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV	
M	Duranturaltana	I _O = 200 mA			0.2	0.35		
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V	
V_{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$	T _a = -40 to 125°C			0.8	٧	
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V	
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA	
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF	


Table 11. Electrical characteristics for KF80 (refer to the test circuits, T_J = 25 °C, C_I = 0.1 μF, C_O = 2.2 μF unless otherwise specified.)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
\/	Output voltage	I _O = 50 mA, V _I = 10 V		7.84	8	8.16	V
V _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a =$	-25 to 85°C	7.68		8.32	V
VI	Operating input voltage	I _O = 500 mA				20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	V _I = 9 to 20 V, I _O = 5 mA			4	24	mV
ΔV_{O}	Load regulation	$V_1 = 9.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		2	50	mV
		V _I = 9 to 20V, I _O = 0mA	ONLMODE		0.7	1.5	A
I_{d}	Quiescent current	$V_1 = 9.3 \text{ to } 20V, I_0 = 500 \text{mA}$	ON MODE			12	mA
		V _I = 9 V	OFF MODE		70	140	μA
		f = 120 Hz	f = 120 Hz		72		
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}, V_{I} = 10 \pm 1 \text{ V}$	f = 1 kHz		67		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV
V	Dunantualtana	I _O = 200 mA			0.2	0.35	V
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	٧
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125^{\circ}\text{C}$		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

5 Typical performance characteristics

(unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$)

Figure 4. Dropout voltage vs output current Figure 5. Dropout voltage vs temperature

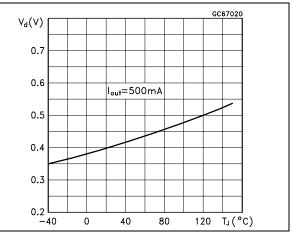


Figure 6. Supply current vs input voltage

16 | I_{out}=500mA | 12 | 8 | 4 | 0 | 0 | 4 | 8 | 12 | 16 | V_i(V)

Figure 7. Supply current vs input voltage

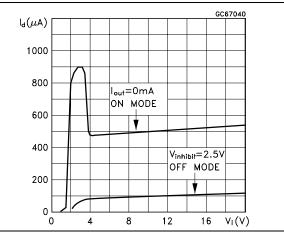
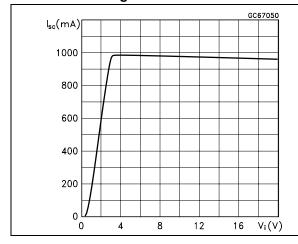
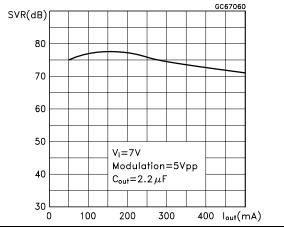
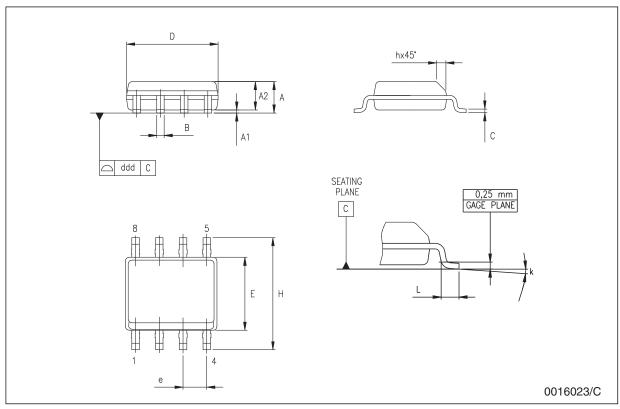




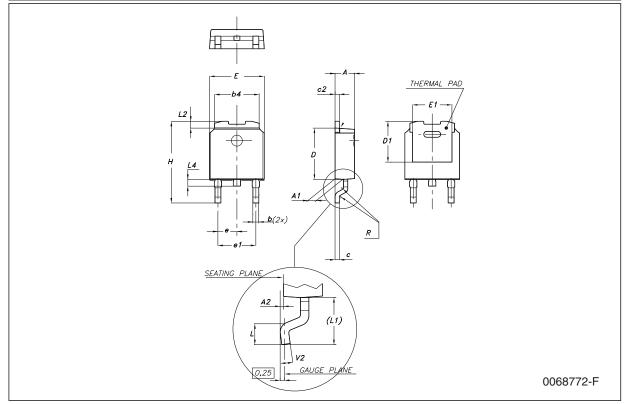
Figure 8. Short circuit current vs input voltage

Figure 9. Supply current vs temperature

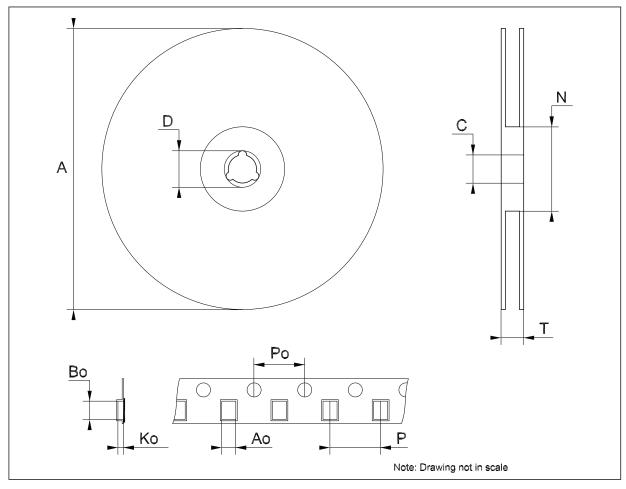

14/22

6 Package mechanical data

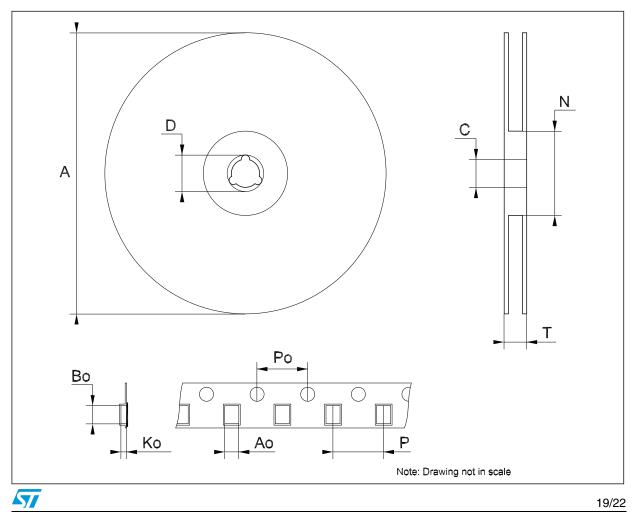
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.


SO-8 mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
Е	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04


DPAK mechanical data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
b4	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
D1		5.1			0.200	
E	6.4		6.6	0.252		0.260
E1		4.7			0.185	
е		2.28			0.090	
e1	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L	1			0.039		
(L1)		2.8			0.110	
L2		0.8			0.031	
L4	0.6		1	0.023		0.039
R		0.2			0.008	
V2	0°		8°	0°		8°



Tape & reel SO-8 mechanical data

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Downloaded from Arrow.com.

Order codes KFxxB

7 Order codes

Table 12. Order codes

Pack	Output valtage		
SO-8 (Tape and reel)	DPAK (Tape and reel)	Output voltage	
	KF15BDT-TR	1.5 V	
KF25BD-TR	KF25BDT-TR	2.5 V	
KF30BD-TR		3 V	
KF33BD-TR	KF33BDT-TR	3.3 V	
KF40BD-TR	KF40BDT-TR	4 V	
KF50BD-TR	KF50BDT-TR	5 V	
KF52BD-TR		5.2 V	
KF80BD-TR	KF80BDT-TR	8 V	

KFxxB Revision history

8 Revision history

Table 13. Document revision history

Date	Revision	Changes
06-Jun-2007	9	Order codes has been updated and the document has been reformatted.
14-Dec-2007	10	Modified: Table 12.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com