N-Channel Power MOSFET 600 V, 4.8 Ω

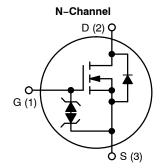
Features

- Low ON Resistance
- Low Gate Charge
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	NDF	NDD	Unit
Drain-to-Source Voltage	V _{DSS}	600		٧
Continuous Drain Current $R_{\theta JC}$ (Note 1)	Ι _D	2.4	2.2	Α
Continuous Drain Current $R_{\theta JC}$ $T_A = 100^{\circ}C$ (Note 1)	I _D	1.6	1.4	Α
Pulsed Drain Current, V _{GS} @ 10 V	I _{DM}	10	9	Α
Power Dissipation $R_{\theta JC}$	P_{D}	24	57	W
Gate-to-Source Voltage	V _{GS}	±30)	V
Single Pulse Avalanche Energy, I _D = 2.4 A	E _{AS}	120		mJ
ESD (HBM) (JESD 22-A114)	V _{esd}	2500		٧
RMS Isolation Voltage (t = 0.3 sec., R.H. \leq 30%, T _A = 25°C) (Figure 17)	V _{ISO}	4500		V
Peak Diode Recovery (Note 2)	dv/dt	4.5		V/ns
Continuous Source Current (Body Diode)	Is	2.4		Α
Maximum Temperature for Soldering Leads	TL	260		°C
Operating Junction and Storage Temperature Range	T _J , T _{stg}	T _{stg} –55 to 150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Limited by maximum junction temperature
- 2. $I_{SD} = 2.4 \text{ A}$, $di/dt \le 100 \text{ A/}\mu\text{s}$, $V_{DD} \le BV_{DSS}$, $T_J = +150^{\circ}\text{C}$

ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(on)} (MAX) @ 1 A
600 V	4.8 Ω

NDF02N60ZG, NDF02N60ZH TO-220FP CASE 221AH

NDD02N60Z-10 IPAK CASE 369D

NDD02N60ZT4G DPAK CASE 369AA

ORDERING AND MARKING INFORMATION

See detailed ordering, marking and shipping information on page 7 of this data sheet.

THERMAL RESISTANCE

Parameter	Symbol	Value	Unit	
Junction-to-Case (Drain)	NDF02N60Z NDD02N60Z	$R_{ heta JC}$	4.9 2.2	°C/W
Junction-to-Ambient Steady State	(Note 3) NDF02N60Z (Note 4) NDD02N60Z (Note 3) NDD02N60Z-1	$R_{ hetaJA}$	51 41 80	

^{3.} Insertion mounted

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Characteristic	Test Conditions		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	
Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		BV _{DSS}	600			V
Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 1 mA		$\Delta BV_{DSS}/\Delta T_{J}$		0.6		V/°C
Drain-to-Source Leakage Current	.,	25°C	I _{DSS}			1	μΑ
	V _{DS} = 600 V, V _{GS} = 0 V	150°C				50	1
Gate-to-Source Forward Leakage	V _{GS} = ±20 V		I _{GSS}			±10	μΑ
ON CHARACTERISTICS (Note 5)					•	•	
Static Drain-to-Source On-Resistance	V _{GS} = 10 V, I _D = 1.0) A	R _{DS(on)}		4.0	4.8	Ω
Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 50	μΑ	V _{GS(th)}	3.0	4.0	4.5	V
Forward Transconductance	V _{DS} = 15 V, I _D = 1.2 A		9FS		1.7		S
DYNAMIC CHARACTERISTICS							
Input Capacitance (Note 6)	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		C _{iss}	215	274	325	pF
Output Capacitance (Note 6)			C _{oss}	25	34	45	1
Reverse Transfer Capacitance (Note 6)			C _{rss}	4.0	7.0	10	1
Total Gate Charge (Note 6)			Q_g	5.0	10	16	nC
Gate-to-Source Charge (Note 6)	V _{DD} = 300 V, I _D = 2.4	4 A,	Q_{gs}	1.5	2.4	4.0	1
Gate-to-Drain ("Miller") Charge (Note 6)	V _{GS} = 10 V		Q_{gd}	3.5	5.3	8.0	1
Plateau Voltage			V _{GP}		6.4		V
Gate Resistance			R _g		4.9		Ω
RESISTIVE SWITCHING CHARACTERISTI	cs				•	•	
Turn-On Delay Time			t _{d(on)}		9.0		ns
Rise Time	V _{DD} = 300 V, I _D = 2.4	4 A,	t _r		7.0		
Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_G = 5$		t _{d(off)}		15		1
Fall Time	1		t _f		7.0		1
SOURCE-DRAIN DIODE CHARACTERIST	ICS (T _C = 25°C unless other	erwise not	ed)				
Diode Forward Voltage	I _S = 2.4 A, V _{GS} = 0	V	V_{SD}			1.6	V
Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 30) V	t _{rr}		240		ns
Reverse Recovery Charge	$I_S = 2.4 \text{ A}, \text{ di/dt} = 100$		Q _{rr}		0.7		μС

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{4.} Surface mounted on FR4 board using 1" sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces).

Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%.
 Guaranteed by design.

TYPICAL CHARACTERISTICS

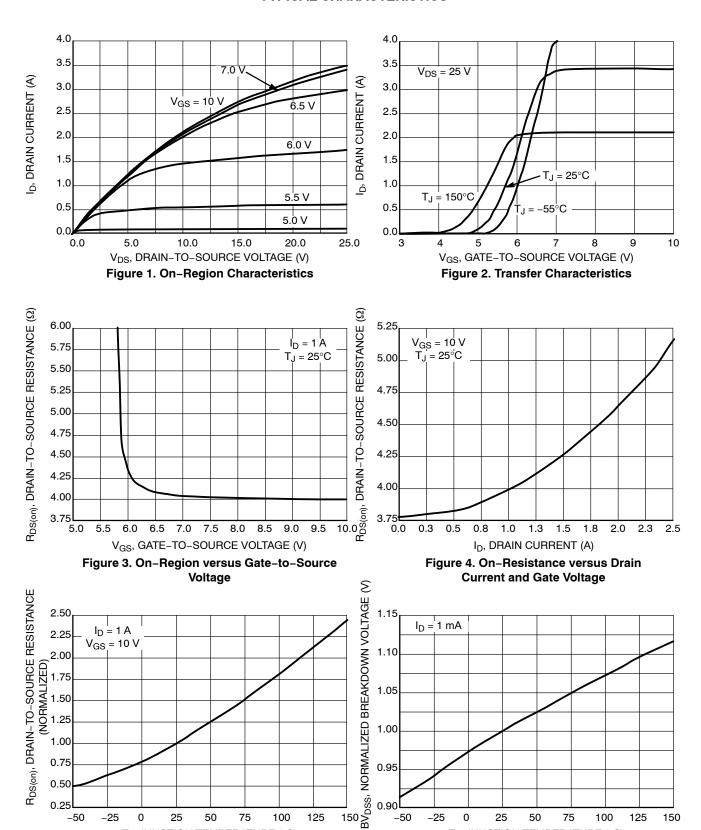


Figure 5. On-Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

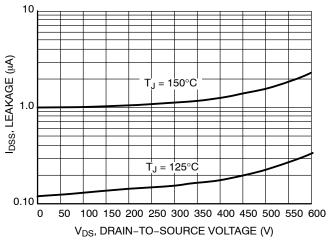

T_J, JUNCTION TEMPERATURE (°C)

Figure 6. BV_{DSS} Variation with Temperature

600 550

500

TYPICAL CHARACTERISTICS

C, CAPACITANCE (pF) 450 400 350 C_{iss} 300 250 200 150 100 50 O 0 5 15 20 25 30 35 40 45 V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Drain-to-Source Leakage Current versus Voltage

Figure 8. Capacitance Variation

 $T_J^l = 25^{l} {}^{\circ}C$ $V_{GS} = 0 V$

f = 1 MHz

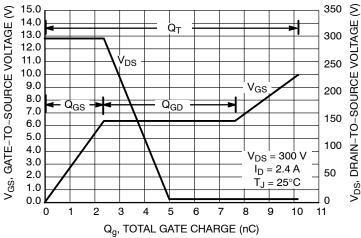
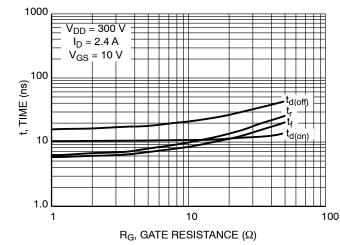



Figure 9. Gate-to-Source Voltage and Drain-to-Source Voltage versus Total Charge

10.0 SOURCE CURRENT (A) T_J = 150°C 1.0 125°C 25°C <u>ŵ</u> 0.1 0.3 0.6 0.7 0.8 0.9 1.0 V_{SD}, SOURCE-TO-DRAIN VOLTAGE (V)

Figure 10. Resistive Switching Time Variation versus Gate Resistance

Figure 11. Diode Forward Voltage versus Current

TYPICAL CHARACTERISTICS

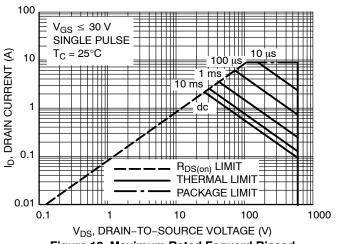


Figure 12. Maximum Rated Forward Biased Safe Operating Area NDD02N60Z

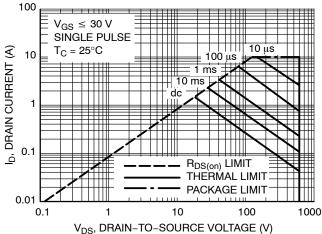


Figure 13. Maximum Rated Forward Biased Safe Operating Area NDF02N60Z

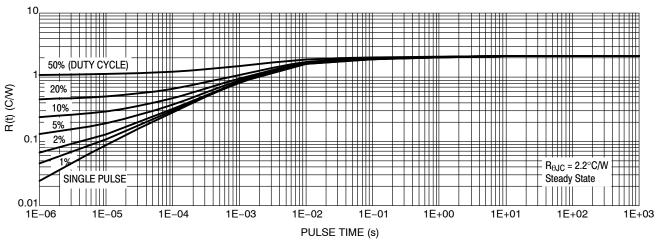


Figure 14. Thermal Impedance (Junction-to-Case) for NDD02N60Z

Figure 15. Thermal Impedance (Junction-to-Ambient) for NDD02N60Z

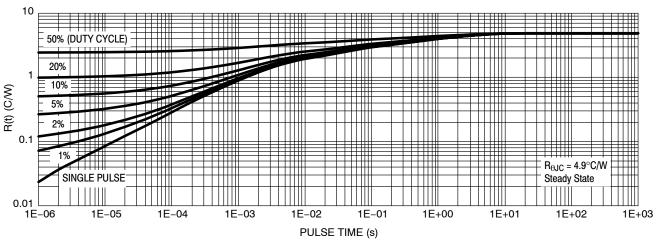


Figure 16. Thermal Impedance (Junction-to-Case) for NDF02N60Z

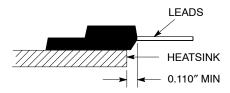
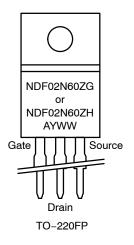
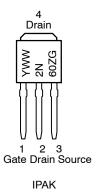
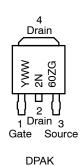


Figure 17. Isolation Test Diagram

Measurement made between leads and heatsink with all leads shorted together.

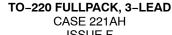

*For additional mounting information, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ORDERING INFORMATION

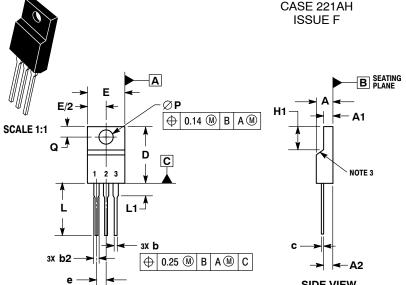

Order Number	Package	Shipping [†]
NDF02N60ZG	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail
NDF02N60ZH	TO-220FP (Pb-Free, Halogen-Free)	50 Units / Rail
NDD02N60Z-1G	IPAK (Pb-Free, Halogen-Free)	75 Units / Rail
NDD02N60ZT4G	DPAK (Pb-Free, Halogen-Free)	2500 / Tape and Reel

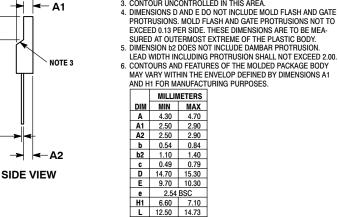
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS



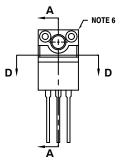
A = Location Code

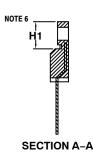

Y = Year


WW = Work Week

G, H = Pb-Free, Halogen-Free Package

DATE 30 SEP 2014





NOTES:

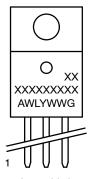
FRONT VIEW

ALTERNATE CONSTRUCTION

GENERIC MARKING DIAGRAM*

4.70

2.90


1.40

0.79

7.10

2.80 3.00 3.40

 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
3. CONTOUR UNCONTROLLED IN THIS AREA.

= Assembly Location

WL = Wafer Lot

= Year

WW = Work Week

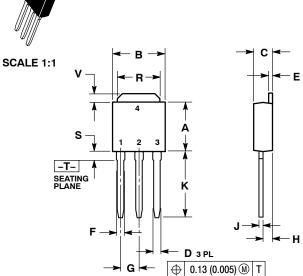
G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:		STYLE 2:	
PIN 1.	MAIN TERMINAL 1	PIN 1.	CATHODE
2.	MAIN TERMINAL 2	2.	ANODE
3.	GATE	3.	GATE

DOCUMENT NUMBER: 98AON52577E Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	,.
Electronic versions are uncontrolled except when accessed directly from the Document	Repository.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

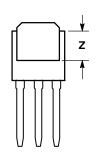
MT2

SOURCE

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

EMITTER

COLLECTOR

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
Κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

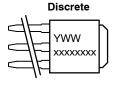
STYLE 4: PIN 1. CATHODE

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE


STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER

COLLECTOR

ANODE
 GATE

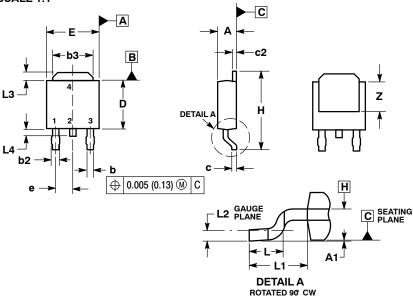
4. ANODE

xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot

Υ = Year WW = Work Week

DOCUMENT NUMBER:	98AON10528D Electronic versions are uncontrolled except when accessed directly from the Document Repr Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	IPAK (DPAK INSERTION M	IOUNT)	PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

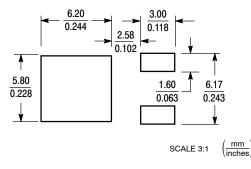
STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

PIN 1. GATE 2. ANODE 3. CATHODE

4. ANODE

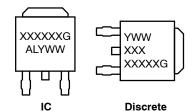
STYLE 5:

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE CATHODE STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

STYLE 6: PIN 1. MT1 2. MT2

3. GATE


STYLE 7: PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative