

Silicon Carbide (SiC) MOSFET – 20 mohm, 1200 V, M1, D2PAK-7L

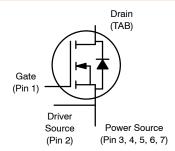
NVBG020N120SC1

Features

- Typ. $R_{DS(on)} = 20 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. Q_{G(tot)} = 220 nC)
- Low Effective Output Capacitance (typ. C_{oss} = 258 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- This Device is Halide Free and RoHS Compliant with exemption 7a, Pb–Free 2LI (on second level interconnection)

Typical Applications

- Automotive On Board Charger
- Automotive DC-DC Converter for EV/HEV


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	1200	V
Gate-to-Source Voltage	Э		V_{GS}	-15/+25	V
Recommended Operation ues of Gate-to-Source		T _C < 175°C	V_{GSop}	-5/+20	>
Continuous Drain Current (Note 2)	Steady State	T _C = 25°C	I _D	98	Α
Power Dissipation (Note 2)			P _D	468	W
Continuous Drain Current (Notes 1, 2)	Steady State	T _A = 25°C	I _D	8.6	Α
Power Dissipation (Notes 1, 2)			P _D	3.7	W
Pulsed Drain Current (Note 3)	T _A = 25°C		I _{DM}	392	Α
Single Pulse Surge Drain Current Capability	T_A = 25°C, t_p = 10 μ s, R_G = 4.7 Ω		I _{DSC}	807	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C	
Source Current (Body Diode)		IS	46	Α	
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 23 A, L = 1 mH) (Note 4)		E _{AS}	264	mJ	
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)		TL	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface mounted on a FR-4 board using 1 in 2 pad of 2 oz copper.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. Repetitive rating, limited by max junction temperature.
- 4. EAS of 264 mJ is based on starting T_J = 25°C; L = 1 mH, I_{AS} = 23 A, V_{DD} = 120 V, V_{GS} = 18 V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
1200 V	28 mΩ @ 20 V	98 A

N-CHANNEL MOSFET

D2PAK-7L CASE 418BJ

MARKING DIAGRAM

AYWWZZ NVBG 020120SC1

A = Assembly Location

Y = Year WW = Work Week

ZZ = Lot Traceability

NVBG020120SC1 = Specific Device Code

ORDERING INFORMATION

	Device	Package	Shipping [†]
NVBG	020N120SC1	D2PAK-7L	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	0.32	°C/W
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	41	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Drain-to-Source Breakdown Voltage Temperature Coefficient V(BR)DSS/T In = 1 mA, referenced to 25°C V. V. V. V. V. V. V. V	Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Drain-to-Source Breakdown Voltage Tamperature Coefficient Tamp	OFF CHARACTERISTICS						
Temperature Coefficient IDSS	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	1200			V
Vos = 1200 V		V _{(BR)DSS} /T _J	I _D = 1 mA, referenced to 25°C		0.5		V/°C
Type	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$			100	μΑ
ON CHARACTERISTICS (Note 3) Sate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = 20 mA 1.8 2.7 4.3 V _{GS} = V _{DS} , I _D = 20 mA 1.8 2.7 4.3 V _{GS} = V _{DS} , I _D = 20 mA 1.8 2.7 4.3 V _{GS} = V _{DS} , I _D = 20 mA 1.8 2.7 4.3 V _{GS} = V _{DS} , I _D = 60 A, T _J = 25°C 2.0 2.8 m V _{GS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 50 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 50 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 50 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 50 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 50 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 50 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 5.0 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 175°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 25°C 3.3 V _{DS} = 20 V, I _D = 60 A, T _J = 25°C 3.3 V _{DS} = 20 V, I _D = 80 A, I _D = 20 V, I _D = 80			$V_{DS} = 1200 \text{ V}$ $T_{J} = 175^{\circ}\text{C}$			1	mA
Sear Threshold Voltage	Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +25/-15 \text{ V}, V_{DS} = 0 \text{ V}$			±1	μΑ
Recommended Gate Voltage	ON CHARACTERISTICS (Note 3)						
Drain-to-Source On Resistance Passion	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 20 \text{ mA}$	1.8	2.7	4.3	V
Vos = 20 V, I _D = 60 A, T _J = 175°C 35 50	Recommended Gate Voltage			-5		+20	V
Forward Transconductance GFS VDS = 20 V, ID = 60 A 34 S CHARGES, CAPACITANCES & GATE RESISTANCE	Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 20 \text{ V}, I_D = 60 \text{ A}, T_J = 25^{\circ}\text{C}$		20	28	mΩ
CHARGES, CAPACITANCES & GATE RESISTANCE Input Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V 2943 P Output Capacitance C _{OSS} 258 24 P Reverse Transfer Capacitance C _{RSS} 24 P Total Gate Charge Q _{G(TOT)} V _{GS} = −5/20 V, V _{DS} = 600 V, U _D = 600 V, U _D = 80 A 220 In Threshold Gate Charge Q _{GS} 66 33 66 66 Gate-to-Source Charge Q _{GS} 66 63 66			$V_{GS} = 20 \text{ V}, I_D = 60 \text{ A}, T_J = 175^{\circ}\text{C}$		35	50	
Input Capacitance	Forward Transconductance	9FS	V _{DS} = 20 V, I _D = 60 A		34		S
Output Capacitance Coss Reverse Transfer Capacitance 258 Reverse Transfer Capacitance C _{RSS} Total Gate Charge Q _{G(TOT)} Q _{G(TH)} V _{GS} = −5/20 V, V _{DS} = 600 V, I _D = 80 A 220 In Threshold Gate Charge Q _{G(TH)} Q _{GS} 33 33 666 33 Gate-to-Drain Charge Q _{GD} 63 66 63 66 Gate-Resistance R _G f = 1 MHz 1.6 9 1 SWITCHING CHARACTERISTICS Turn-On Delay Time t _Q V _{SS} = −5/20 V, V _{DS} = 800 V, I _D = 80 A, V _{DS} = 800 V, I _D = 80 A, R _G = 2 Ω inductive load 22 35 In Fall Time t _Q 42 67 18 42 67 Fall Time t _Q 1 42 67 18 461 19 Turn-On Switching Loss E _{OFF} E _{OFF} 460 461 19 Total Switching Loss E _{Iot} 861 392 18 DRAIN-SOURCE DIODE CHARACTERISTICS 46 46	CHARGES, CAPACITANCES & GATE RES	ISTANCE	-				
Reverse Transfer Capacitance C _{RSS} C _{RSS}	Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 800 V		2943		pF
$ \begin{array}{ c c c c c c } \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{G(TH)} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{Gate-Resistance} & R_{G} & f = 1 \text{MHz} \\ \hline \text{SWITCHING CHARACTERISTICS} \\ \hline \text{Turn-On Delay Time} & t_{d(ON)} \\ \hline \text{Fall Time} & t_{f} \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \text{Fall Time} & t_{f} \\ \hline \text{Turn-Off Switching Loss} & E_{ON} \\ \hline \text{Total Switching Loss} & E_{Lot} \\ \hline \hline \textbf{DRAIN-SOURCE DIODE CHARACTERISTICS} \\ \hline \textbf{Continuous Drain-Source Diode Forward Current} & I_{SDM} \\ \hline \text{Continuous Drain-Source Diode Forward Current (Note 3)} & V_{GS} = -5 V_{f} I_{SD} = 30 A_{f} T_{J} = 25 ^{\circ}\text{C} \\ \hline \text{Reverse Recovery Time} & t_{RR} \\ \hline \end{array} \begin{array}{c} V_{GS} = -5 V_{20} V_{10} S_{20} S_{20}$	Output Capacitance	Coss	1		258		1
$ \begin{array}{ c c c c c c } \hline \text{Total Gate Charge} & Q_{G(TOT)} \\ \hline \text{Threshold Gate Charge} & Q_{G(TH)} \\ \hline \text{Gate-to-Source Charge} & Q_{GS} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{Gate-to-Drain Charge} & Q_{GD} \\ \hline \text{Gate-Resistance} & R_{G} & f = 1 \text{MHz} \\ \hline \text{SWITCHING CHARACTERISTICS} \\ \hline \text{Turn-On Delay Time} & t_{d(ON)} \\ \hline \text{Fall Time} & t_{f} \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} \\ \hline \text{Fall Time} & t_{f} \\ \hline \text{Turn-Off Switching Loss} & E_{ON} \\ \hline \text{Total Switching Loss} & E_{Lot} \\ \hline \hline \textbf{DRAIN-SOURCE DIODE CHARACTERISTICS} \\ \hline \textbf{Continuous Drain-Source Diode Forward Current} & I_{SDM} \\ \hline \text{Continuous Drain-Source Diode Forward Current (Note 3)} & V_{GS} = -5 V_{f} I_{SD} = 30 A_{f} T_{J} = 25 ^{\circ}\text{C} \\ \hline \text{Reverse Recovery Time} & t_{RR} \\ \hline \end{array} \begin{array}{c} V_{GS} = -5 V_{20} V_{10} S_{20} S_{20}$	Reverse Transfer Capacitance	C _{RSS}	1		24		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge				220		nC
Gate-to-Source Charge Q _{GS} Gate-to-Drain Charge Q _{GD} Gate-Resistance R _G f = 1 MHz 1.6 g SWITCHING CHARACTERISTICS Turn-On Delay Time t _{d(ON)} V _{GS} = -5/20 V, V _{DS} = 800 V, I _D = 80 A, R _G = 2 Ω inductive load 22 35 Inductive load 42 67 Fall Time t _f H _G = 2 Ω inductive load 461 9 18 Turn-Off Switching Loss E _{ON} 461 400 461 400 Turn-Off Switching Loss E _{Iot} V _{GS} = -5 V, T _J = 25°C 46 46 DRAIN-SOURCE DIODE CHARACTERISTICS I _{SD} V _{GS} = -5 V, T _J = 25°C 3.7 46 Pulsed Drain-Source Diode Forward Current (Note 3) I _{SD} V _{GS} = -5 V, I _{SD} = 30 A, T _J = 25°C 3.7 392 Forward Diode Voltage V _{SD} V _{GS} = -5/20 V, I _{SD} = 80 A, I	Threshold Gate Charge	Q _{G(TH)}	I _D = 80 A		33		1
$ \begin{array}{ c c c c c c c c } \hline \text{Gate-Resistance} & R_G & f = 1 \text{MHz} & 1.6 & 9 \\ \hline \textbf{SWITCHING CHARACTERISTICS} \\ \hline \hline \textbf{Turn-On Delay Time} & \textbf{t}_{d(ON)} & V_{QS} = -5/20 \text{V}, \\ \hline \textbf{Rise Time} & \textbf{t}_r & V_{DS} = 800 \text{V}, \\ \hline \textbf{Lurn-Off Delay Time} & \textbf{t}_{d(OFF)} & 0.0 & 0.0 & 0.0 \\ \hline \textbf{Fall Time} & \textbf{t}_f & 0.0 & 0.0 & 0.0 \\ \hline \textbf{Turn-On Switching Loss} & E_{ON} & 0.0 & 0.0 \\ \hline \textbf{Turn-Off Switching Loss} & E_{OFF} & 0.0 & 0.0 \\ \hline \textbf{Total Switching Loss} & E_{OFF} & 0.0 & 0.0 \\ \hline \textbf{Total Switching Loss} & E_{tot} & 0.0 & 0.0 \\ \hline \textbf{DRAIN-SOURCE DIODE CHARACTERISTICS} & 0.0 & 0.0 & 0.0 \\ \hline \textbf{Pulsed Drain-Source Diode Forward Current} & I_{SD} & V_{GS} = -5 \text{V}, T_J = 25 ^{\circ}\text{C} & 0.0 & 0.0 \\ \hline \textbf{Pulsed Drain-Source Diode Forward Current (Note 3)} & 0.0 & 0.0 & 0.0 \\ \hline \textbf{Reverse Recovery Time} & \textbf{t}_{RR} & V_{GS} = -5/20 \text{V}, I_{SD} = 80 \text{A}, \\ \textbf{dis/dt} = 1000 \text{A/us} & 0.0 \\ \hline \end{array} $	Gate-to-Source Charge		1		66		
	Gate-to-Drain Charge	Q_GD	1		63		
$ \begin{array}{ c c c c }\hline \text{Turn-On Delay Time} & t_{d(ON)} & V_{GS} = -5/20 \text{ V}, \\ \hline \text{Rise Time} & t_r & V_{DS} = 800 \text{ V}, \\ \hline \text{Turn-Off Delay Time} & t_{d(OFF)} & 20 & 32 \\ \hline \text{Fall Time} & t_f & 9 & 18 \\ \hline \text{Turn-On Switching Loss} & E_{ON} & 461 & 400 \\ \hline \text{Total Switching Loss} & E_{tot} & 861 & 461 \\ \hline \textbf{DRAIN-SOURCE DIODE CHARACTERISTICS} & V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C} & 46 & 461 \\ \hline \text{Pulsed Drain-Source Diode Forward Current} & I_{SDM} & V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}, T_J = 25^{\circ}\text{C} & 3.7 & 9 \\ \hline \text{Reverse Recovery Time} & t_{RR} & V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A}, \\ \hline \text{Indicative load} & 1 & 9 & 18 \\ \hline \text{Pulsed Drain-Source Diode Forward} & I_{SDM} & 392 \\ \hline \text{Reverse Recovery Time} & t_{RR} & V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A}, \\ \hline \text{Indicative load} & 31 & 10 & 10 \\ \hline \text{Indicative load} & 20 & 32 \\ \hline \text{Indicative load} & 20 & 32 \\ \hline \text{Indicative load} & 20 & 32 \\ \hline \text{Indicative load} & 9 & 18 \\ \hline Indicati$	Gate-Resistance	R_{G}	f = 1 MHz		1.6		Ω
Rise Time $t_{r} = 0.000 \text{ Mps} = 0.000 M$	SWITCHING CHARACTERISTICS					•	•
Rise Time	Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5/20 \text{ V},$		22	35	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time				20	32	
Fall Time	Turn-Off Delay Time	t _{d(OFF)}	$R_G = 2 \Omega$		42	67	
Turn-Off Switching Loss E _{OFF} 400 Total Switching Loss E _{tot} 861 DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Drain-Source Diode Forward Current I _{SD} V _{GS} = -5 V, T _J = 25°C 46 7 Pulsed Drain-Source Diode Forward Current (Note 3) I _{SDM} 392 392 Forward Diode Voltage V _{SD} V _{GS} = -5 V, I _{SD} = 30 A, T _J = 25°C 3.7 V _{SD} Reverse Recovery Time t _{RR} V _{GS} = -5/20 V, I _{SD} = 80 A, dle/dt = 1000 A/us 31 n	Fall Time	t _f	Inductive load		9	18	
Total Switching Loss E_{tot} 861 DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Drain-Source Diode Forward Current I_{SD} $V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$ 46 Pulsed Drain-Source Diode Forward Current (Note 3) I_{SDM} 392 Forward Diode Voltage V_{SD} $V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}, T_J = 25^{\circ}\text{C}$ 3.7 Reverse Recovery Time I_{RR} $V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A}, dle/dt = 1000 A/us $	Turn-On Switching Loss	E _{ON}	1		461		μJ
DRAIN-SOURCE DIODE CHARACTERISTICS Continuous Drain-Source Diode Forward Current I_{SD} $V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$ 46 7 Pulsed Drain-Source Diode Forward Current (Note 3) I_{SDM} 392 Forward Diode Voltage V_{SD} $V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}, T_J = 25^{\circ}\text{C}$ 3.7 V_{SD} Reverse Recovery Time I_{RR} $V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A}, I_{SD} =$	Turn-Off Switching Loss	E _{OFF}			400		
Continuous Drain–Source Diode Forward Current I_{SD} $V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$ 46 Pulsed Drain–Source Diode Forward Current (Note 3) I_{SDM} 392 Forward Diode Voltage V_{SD} $V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}, T_J = 25^{\circ}\text{C}$ 3.7 Reverse Recovery Time t_{RR} $V_{GS} = -5/20 \text{ V}, I_{SD} = 80 \text{ A}, dle/dt = 1000 A/us $	Total Switching Loss	-	1		861		
Current Pulsed Drain–Source Diode Forward Current (Note 3) I _{SDM} 392 Forward Diode Voltage V _{SD} V _{GS} = -5 V, I _{SD} = 30 A, T _J = 25°C 3.7 V Reverse Recovery Time t _{RR} V _{GS} = -5/20 V, I _{SD} = 80 A, dle/dt = 1000 A/us 31 n	DRAIN-SOURCE DIODE CHARACTERIST	ics				•	•
Current (Note 3) V _{SD} V _{SD} = -5 V, I _{SD} = 30 A, T _J = 25°C 3.7 V Reverse Recovery Time t _{RR} V _{GS} = -5/20 V, I _{SD} = 80 A, dls/dt = 1000 A/us 31 n		I _{SD}	$V_{GS} = -5 \text{ V}, T_J = 25^{\circ}\text{C}$			46	Α
Reverse Recovery Time		I _{SDM}				392	
Reverse Recovery Time	Forward Diode Voltage	V_{SD}	$V_{GS} = -5 \text{ V}, I_{SD} = 30 \text{ A}, T_{J} = 25^{\circ}\text{C}$		3.7		V
dlc/dt = 1000 A/us	Reverse Recovery Time				31		ns
neverse necovery onarge QHR 220 11	Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs		228	<u> </u>	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

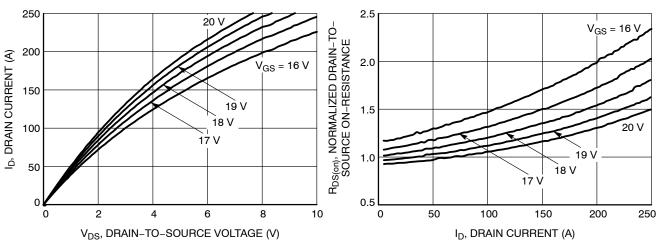


Figure 1. On-Region Characteristics

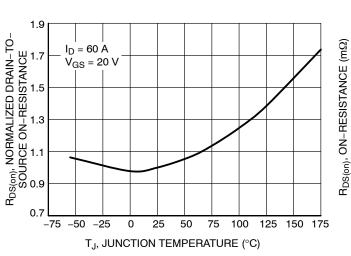


Figure 3. On–Resistance Variation with Temperature

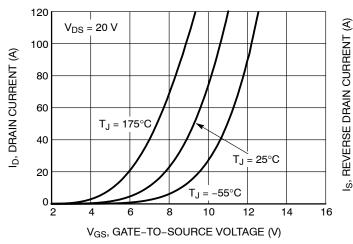


Figure 5. Transfer Characteristics

Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

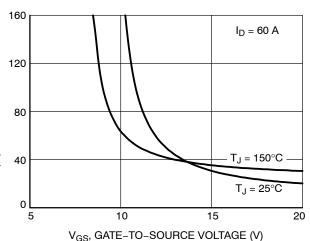


Figure 4. On-Resistance vs. Gate-to-Source Voltage

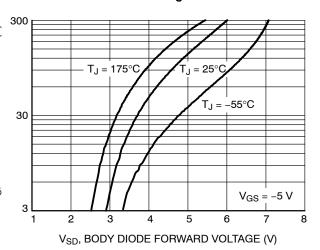


Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS (continued)

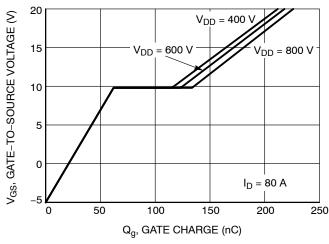


Figure 7. Gate-to-Source Voltage vs. Total Charge

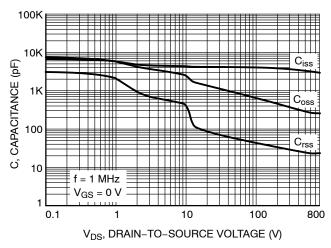


Figure 8. Capacitance vs. Drain-to-Source Voltage

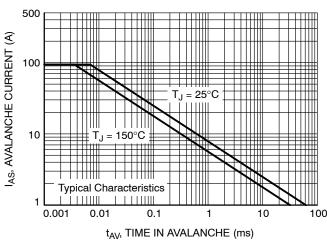


Figure 9. Unclamped Inductive Switching Capability

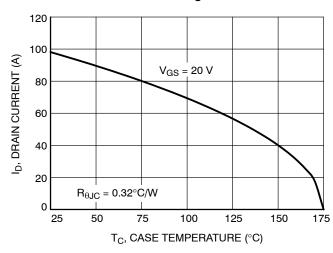


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

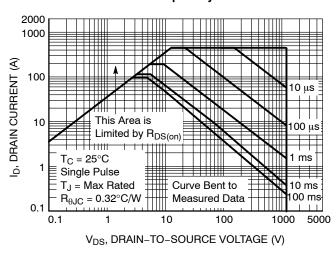


Figure 11. Maximum Rated Forward Biased Safe Operating Area

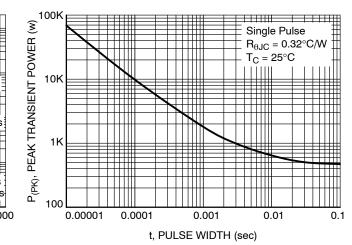


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (continued)

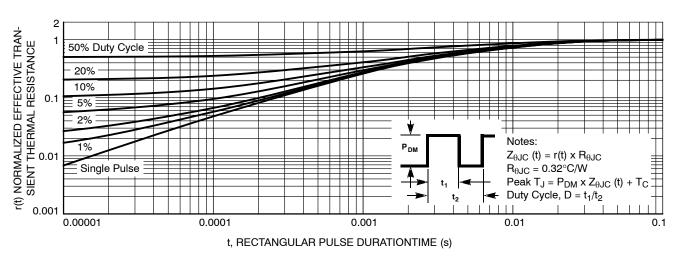


Figure 13. Junction-to-Case Transient Thermal Response Curve

Α

D

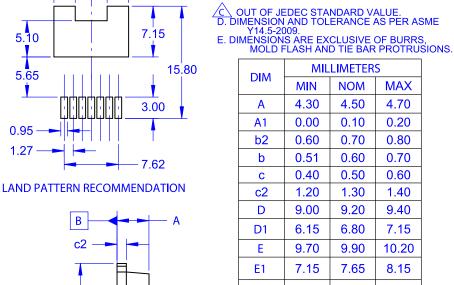
D²PAK7 (TO-263-7L HV) CASE 418BJ **ISSUE B**

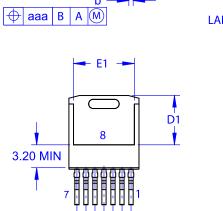
10.50

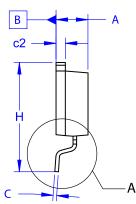
4,50

5.10

5.65

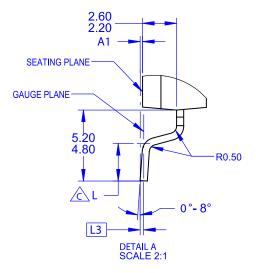

0.95 1.27


DATE 16 AUG 2019


NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.

DIM	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	4.30	4.50	4.70			
A1	0.00	0.10	0.20			
b2	0.60	0.70	0.80			
b	0.51	0.60	0.70			
С	0.40	0.50	0.60			
c2	1.20	1.30	1.40			
D	9.00	9.20	9.40			
D1	6.15	6.80	7.15			
Е	9.70	9.90	10.20			
E1	7.15	7.65	8.15			
е	~	1.27	~			
Н	15.10	15.40	15.70			
L	2.44	2.64	2.84			
L1	1.00	1.20	1.40			
L3	~	0.25	~			
aaa	~	~	0.25			


GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

= Assembly Location = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON84234G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D ² PAK7 (TO-263-7L HV)		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond