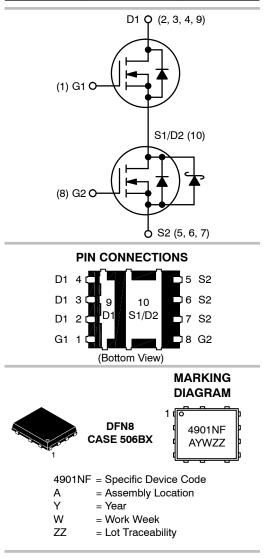
MOSFET – Power, Dual, N-Channel with Integrated Schottky, SO8FL

30 V, High Side 18 A / Low Side 30 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Low Side MOSFET with Integrated Schottky
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- DC–DC Converters
- System Voltage Rails
- Point of Load

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	6.5 mΩ @ 10 V	10.4
30 V	10 mΩ @ 4.5 V	18 A
Q2 Bottom	$2.35~\mathrm{m}\Omega$ @ 10 V	20.4
FET 30 V	3.5 mΩ @ 4.5 V	30 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage			Q1	V _{GS}	±20	V
Gate-to-Source Voltage			Q2			
Continuous Drain Current $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	Q1	I _D	13.5	
		$T_A = 85^{\circ}C$			9.7	
		T _A = 25°C	Q2		23.4	A
		T _A = 85°C			16.9	
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	Q1	PD	1.90	W
			Q2		2.07	
Continuous Drain Current $R_{\theta JA} \le 10$ s (Note 1)		$T_A = 25^{\circ}C$	Q1	۱ _D	18.2	
		$T_A = 85^{\circ}C$			13.1	
	Steady	$T_A = 25^{\circ}C$	Q2		30.3	A
	State	$T_A = 85^{\circ}C$			21.8	
Power Dissipation $R_{\theta JA} \le 10 \text{ s}$ (Note 1)		$T_A = 25^{\circ}C$	Q1	PD	3.45	W
			Q2		3.45	
Continuous Drain Current $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	Q1	I _D	10.3	
		$T_A = 85^{\circ}C$			7.4	
		$T_A = 25^{\circ}C$	Q2		17.9	A
		$T_A = 85^{\circ}C$			12.9	
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25 °C	Q1	PD	1.10	W
			Q2		1.20	
Pulsed Drain Current		$T_A = 25^{\circ}C$	Q1	I _{DM}	60	А
		t _p = 10 μs	Q2		100	
Operating Junction and Storage Temperature			Q1	T _J , T _{STG}	–55 to +150	°C
			Q2			
Source Current (Body Diode)		Q1	۱ _S	3.4	А	
			Q2		4.9	
Drain to Source dV/dt				dV/dt	6	V/ns
Single Pulse Drain-to-Source Avalanche Energy ($T_J = 2$	25C, V _{DD}	24 A	Q1	EAS	28.8	mJ
	00		115	1		
= 50 V, V_{GS} = 10 V, I_L = XX A_{pk} , L = 0.1 mH, R_G = 25 Ω))	48 A	Q2	EAS	115	

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
2. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	R_{\thetaJA}	65.9	
	Q2		60.5	
Junction-to-Ambient - Steady State (Note 4)	Q1	R_{\thetaJA}	113.2	°C 14/
	Q2		104	°C/W
Junction-to-Ambient – (t \leq 10 s) (Note 3)	Q1	R_{\thetaJA}	36.2	
	Q2		36.2	

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS	-								
Drain-to-Source Break-	Q1	V _{(BR)DSS}	V _{GS} = 0 V,	D = 250 μA	30			V	
down Voltage	Q2		V _{GS} = 0 V,	I _D = 1 mA	30				
Drain-to-Source Break-	Q1	V _{(BR)DSS} / T _J	/ _{(BR)DSS}			18		mV / °C	
down Voltage Temperature Coefficient	Q2	/ IJ						7 ~	
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1	μA	
Current			$v_{DS} = 24 V$	$T_J = 125^{\circ}C$			10		
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			500		
Gate-to-Source Leakage	Q1	I _{GSS}	I_{GSS} $V_{GS} = 0 V, VDS = \pm 20 V$				±100	nA	
Current	Q2						±100	1	

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = 250 μA	1.2		2.2	V
	Q2				1.2		2.2	
Negative Threshold Temper- ature Coefficient	Q1	V _{GS(TH)} / T _J				4.5		mV / °C
ature Coemcient	Q2	IJ				4.0		-0
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.2	6.5	
ance			V _{GS} = 4.5 V	I _D = 10 A		8.0	10	mΩ
	Q2		V _{GS} = 10 V	I _D = 20 A		1.9	2.35	11152
			V _{GS} = 4.5 V	I _D = 20 A		2.8	3.5	
Forward Transconductance	Q1	9 FS	V _{DS} = 1.5 V	V, I _D = 10 A		28		S
	Q2					45		

 $\begin{array}{lll} \text{5. Pulse Test: pulse width} \leq 300 \ \mu\text{s}, \ \text{duty cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E	-	-	-	
Innut Conscitones	Q1	6			1150		
Input Capacitance	Q2	C _{ISS}			2950		1
Output Capacitance	Q1	Carr	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V		360		рF
Oulpui Capacitance	Q2	C _{OSS}	$v_{GS} = 0$ v, $i = 1$ with 2, $v_{DS} = 13$ v		1100		р
Reverse Capacitance	Q1	Carr			105		
Neverse Capacitance	Q2	C _{RSS}			82		
Total Gate Charge	Q1	0			9.7		
Total Gale Charge	Q2	Q _{G(TOT)}			20		
Threshold Gate Charge	Q1	0			1.1		
Theshold Gale Charge	Q2	Q _{G(TH)}			2.7		nC
Gate-to-Source Charge	Q1	0.55	V_{GS} = 4.5 V, V_{DS} = 15 V; I_{D} = 10 A		3.3		no
Gale-10-3001ce Charge	Q2	Q _{GS}			7.3		
Gate-to-Drain Charge	Q1	Q _{GD}			3.7		
Gale-lo-Drain Charge	Q2	GD			5.3		
Total Gate Charge	Q1	0			19.1		nC
Total Gale Charge	Q2	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 10 A		42.7		ne
SWITCHING CHARACTERIS	TICS (No	te 6)					
	Q1				9.0		
Turn-On Delay Time	Q2	t _{d(ON)}			14		
Rise Time	Q1	+			15		1
Rise Time	Q2	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,		16		
	Q1		$\begin{array}{l} V_{GS}=4.5 \; V, \; V_{DS}=15 \; V, \\ I_{D}=10 \; A, \; R_{G}=3.0 \; \Omega \end{array}$		14		ns
Turn-Off Delay Time	Q2	t _{d(OFF)}			25]
	Q1	+			4.0		1
Fall Time	Q2	t _f			7.0		1

SWITCHING CHARACTERISTICS (Note 6)

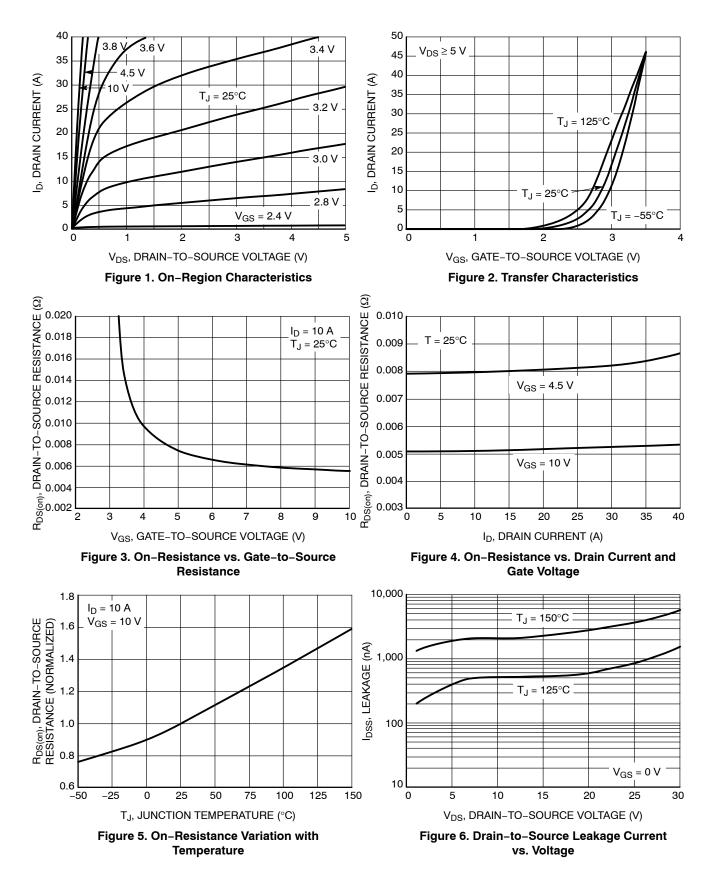
Turn On Dalay Time	Q1			6.0		
Turn-On Delay Time	Q2	t _{d(ON)}		10		
Rise Time	Q1	+		14		
	Q2	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 10 A, R _G = 3.0 Ω	15	20	
Turn Off Dalay Time	Q1			$I_{\rm D}$ = 10 A, $R_{\rm G}$ = 3.0 Ω	17	ns
Turn-Off Delay Time	Q2	^t d(OFF)		32		
Fall Time	Q1	+.		3.0		
Fail Time	Q2	t _f		5.0		

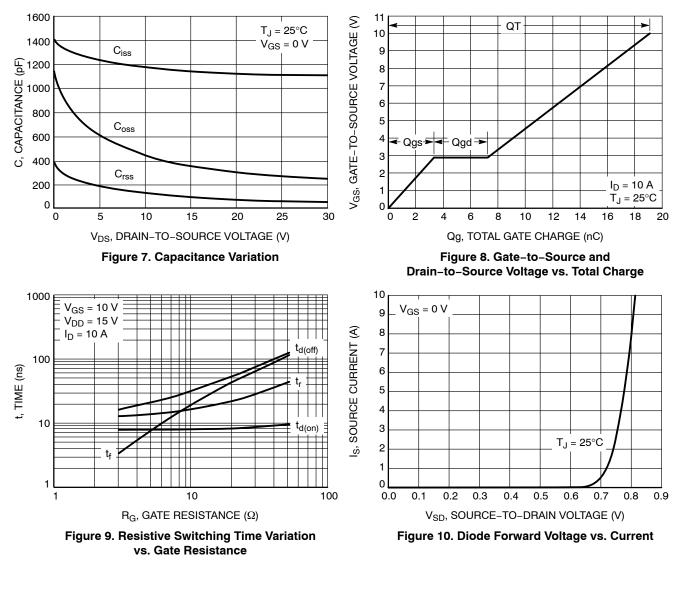
Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

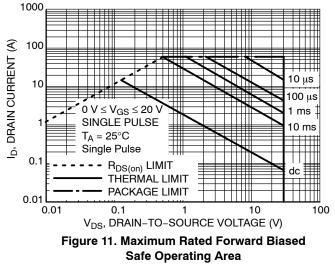
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit				
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS										
	01		V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.75	1.0					
	Q1	Ň	V _{GS} = 0 V, I _S = 3 A	T _J = 125°C		0.62		v				
Forward Voltage	00	V_{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.45	0.70	v				
	Q2	Ì	$I_{\rm S} = 2 {\rm A}$ $T_{\rm J} = 125^{\circ}{\rm C}$		$I_{\rm S} = 2 {\rm A}$		0.37					
Deveree Deserver, Time	Q1					23						
Reverse Recovery Time	Q2	t _{RR}				40						
Oha wa Tiwa	Q1	1.						12				
Charge Time	Q2	ta				21		ns				
Discharge Time	Q1				14		V_{GS} = 0 V, d_{IS}/d_t =	100 A/μs, I _S = 3 A		11		
Discharge Time	Q2	tb				19						
Devere Desever Oberes	Q1	0				12		-0				
Reverse Recovery Charge	Q2	Q _{RR}				40		nC				

PACKAGE PARASITIC VALUES


Source Inductance	Q1				0.38	nH	
Source inductance	Q2	LS			0.65		
Drain Inductance	Q1			0.054			
Drain inductance	Q2	LD	T. 0500	0.0	0.007	nH	
Gate Inductance	Q1		$T_A = 25^{\circ}C$		1.5	nH	
Gale inductance	Q2	L _G	ĽĠ			1.5	
Gate Resistance	Q1	Р			0.8	0	
	Q2	R _G			0.8	Ω	


5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.


ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD4901NFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4901NFT3G	DFN8 (Pb–Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

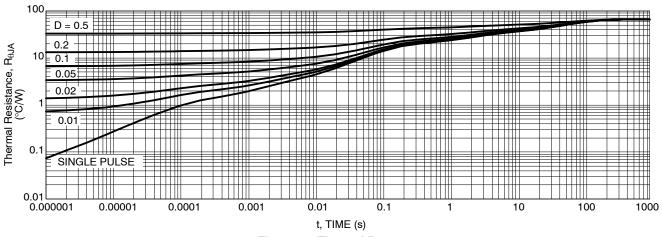
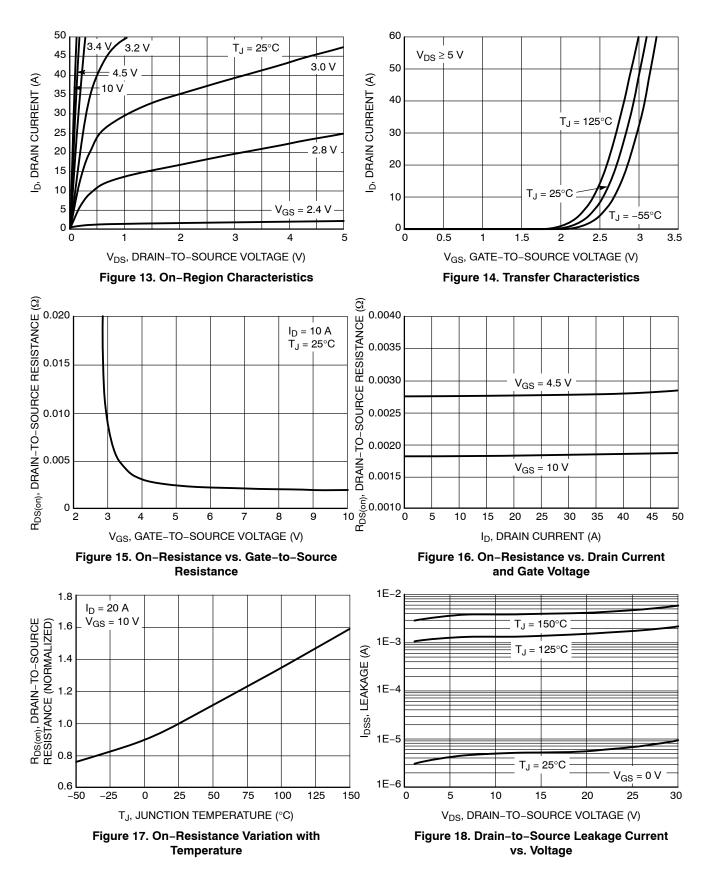
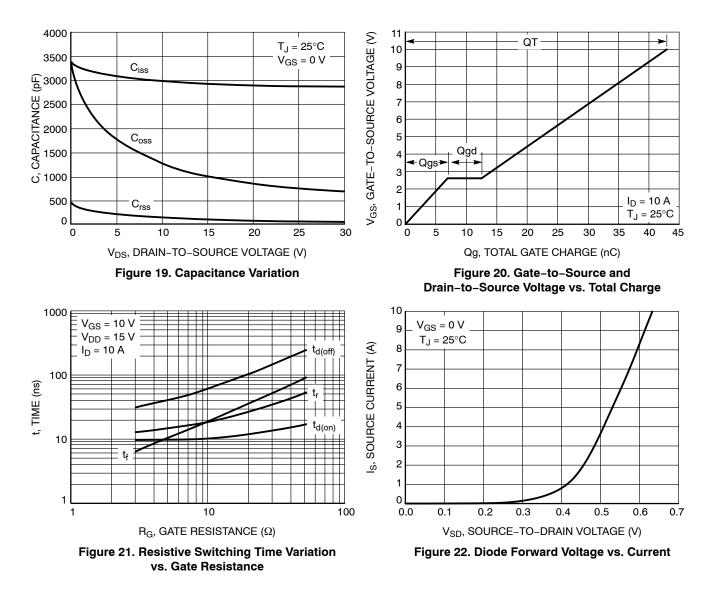
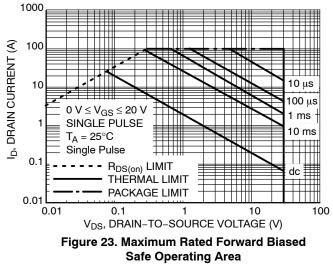





Figure 12. Thermal Response

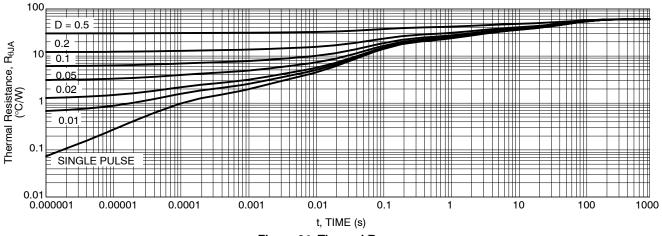
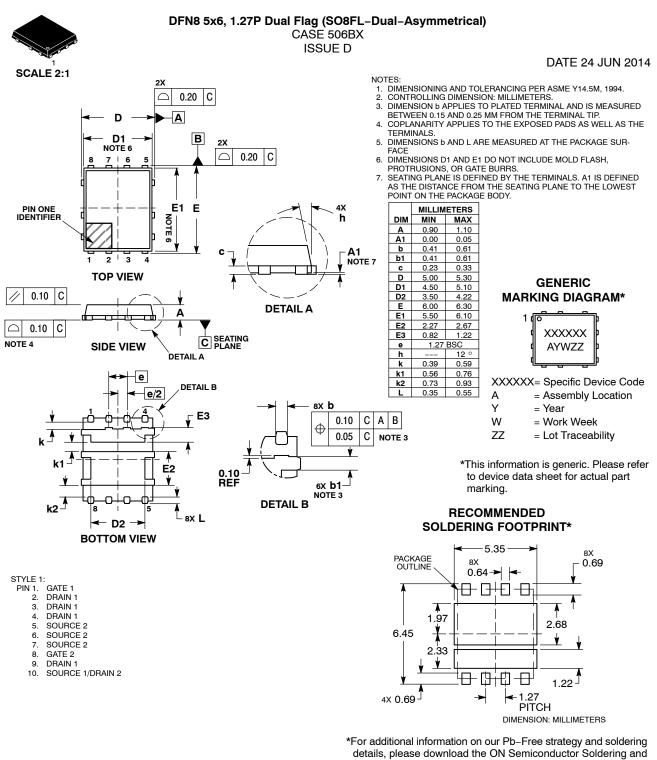



Figure 24. Thermal Response

Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON54291E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	DFN8 5X6, 1.27P DUAL FLAG (SO8FL-DUAL-ASYMMETRICAL) PAGE 1 OF 1						
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond