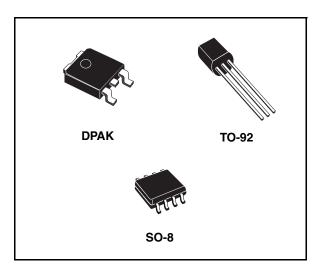


LM2931XX - LM2931AXX33 LM2931AXX50 - LM2931BXX50

Very low drop voltage regulators with inhibit function

Features


- Very low dropout voltage (0.15 V typ. at 10 mA load)
- Low quiescent current (typ. 2.5 mA, at 100 mA load)
- Output current up to 100 mA
- Adjustable (from V_{OUT} = 2.5 V only SO-8) and fixed (3.3 V & 5 V) output voltage version
- Internal current and thermal limit
- Load dump protection up to 60 V
- Reverse transient protection up to -50 V
- Temperature range: -40 to 125 °C
- Package available: TO-92, DPAK, SO-8 (with inhibit control)

Description

The LM2931xx are very low drop regulators. The very low drop voltage and the low quiescent current make them particular suitable for low noise, low power applications and in battery powered systems. In the 8 pin configuration (SO-8), fully compatible to the older L78Lxx family, a shut down logic control function is available.

This means that when the device is used as a local regulator is possible to put a part of the

Table 1.Device summary

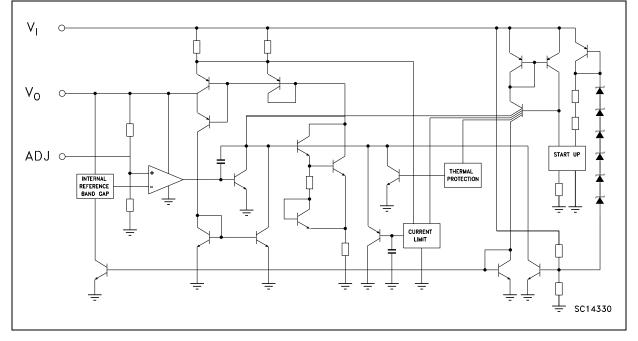
board in stand-by decreasing the total power consumption. Ideal for automotive application the LM2931xx is protected from reverse battery installations or 2 battery jumps. During the transient, such as a a load dump (60 V) when the input voltage can exceed the specified maximum operating input voltage (26 V), the regulator will automatically shut down to protect both internal circuit and the load.

	Orde	r codes		
	Output voltage			
DPAK	TO-92 (BAG)	TO-92 (Ammopak) ⁽¹⁾	SO-8	
	LM2931AZ33R		LM2931AD33R	3.3 V
LM2931ADT50R	LM2931AZ50R		LM2931AD50R	5.0 V
	LM2931BZ50R	LM2931BZ50AP	LM2931BD50R	5.0 V
			LM2931D-R	2.5 to 26 V

1. Please note that in these cases pins are shaped according to tape & reel specifications.

July 2008

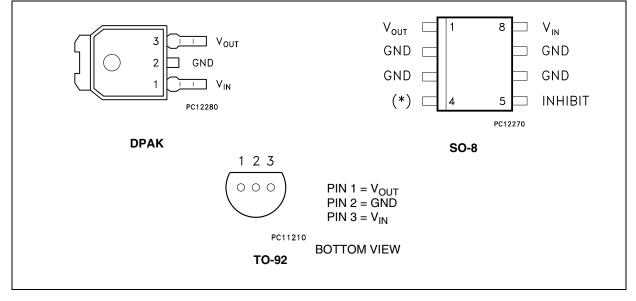
www.st.com


57

Contents

1	Pin configuration
2	Truth tables
3	Maximum ratings
4	Electrical characteristics
5	Application circuits
6	Timing diagrams
7	Package mechanical data 13
8	Order code
9	Revision history

1 Diagram



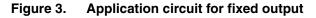
2 Pin configuration

3 Maximum ratings

Symbol	Parameter	Value	Unit
VI	DC positive input voltage	40	V
VI	DC reverse input voltage	-15	V
VI	Transient input voltage ($\tau < 100 \text{ ms}$)	60	V
VI	Transient reverse input voltage (τ < 100 ms)	-50	V
V _{INH}	Inhibit input voltage	40	V
Ι _Ο	Output current	Internally limited	
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

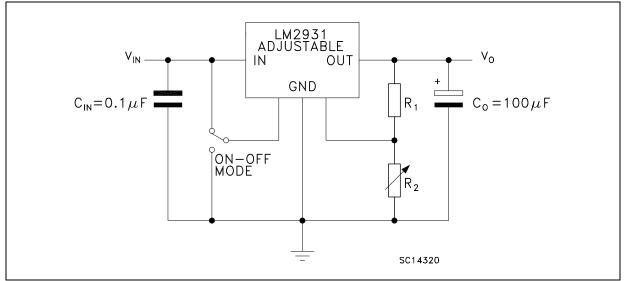
 Table 2.
 Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied


Table 3. Thermal data

Symbol	Parameter	SO-8	DPAK	TO-92	Unit
R _{thJC}	Thermal resistance junction-case	20	8		°C/W
R _{thJA}	Thermal resistance junction-ambient	55 ⁽¹⁾	100	200	°C/W

1. Considering 6 cm2 of copper board heat-sink.



4 Application circuits

Figure 4. Application circuit for adjustable output

 R_1 suggested value = 27 k Ω $V_O = V_{REF} (R_1 + R_2)/R_1$

5 Electrical characteristics

Table 4. Electrical characteristics of LM2931Axx33 (refer to the application circuit *Figure 3*, $T_J = 25 \text{ °C}$, $C_I = 0.1 \mu$ F, $C_O = 100 \mu$ F, $V_I = 14 \text{ V}$, $I_O = 10 \text{ mA}$, $V_{INH} = 0 \text{ V}$, unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	I _O = 10 mA, T _J = -40 to 125°C	26	37		V
Vo	Output voltage		3.135	3.3	3.425	V
V _O	Output voltage	$I_{O} = 100 \text{ mA}, V_{I} = 6 \text{ to } 26 \text{ V}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	3.135	3.3	3.465	V
A) (Line regulation	V _I = 9 to 16 V		2	10	mV
ΔV_O	Line regulation	V _I = 6 to 26 V		4	33	mv
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		10	33	mV
V	Dropout voltage (1) (2)	I _O = 10 mA		90	250	mV
V _d	Dropout voltage (7.77	I _O = 100 mA		250	600	mv
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 330 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	78		dB
V _{IL}	Control input voltage low	$T_{\rm J} = -40$ to 125°C		2	1.2	V
V_{IH}	Control input voltage high	$T_{\rm J} = -40$ to 125°C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R_{LOAD} = 330 Ω, τ < 100ms	60	70		V
VI	Reverse polarity input voltage	$V_{O} = \pm 0.3 \text{ V}, \text{ R}_{LOAD} = 330 \Omega$	-15	-50		v
VI	Reverse polarity input voltage transient	R _{LOAD} = 330 Ω, τ < 100ms	-50			v
eN	Output noise voltage	B =10 Hz to 100 kHz		330		μV _{RMS}

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

2. V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Table 5.Electrical characteristics of LM2931Axx50 (refer to the application circuit Figure 3,
 $T_J = 25 \text{ °C}$, $C_I = 0.1 \mu$ F, $C_O = 100 \mu$ F, $V_I = 14$ V, $I_O = 10$ mA, $V_{INH} = 0$ V, unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	$I_{O} = 10 \text{ mA}, \text{ T}_{J} = -40 \text{ to } 125^{\circ}\text{C}$	26	37		V
Vo	Output voltage		4.81	5	5.19	V
V _O	Output voltage	$I_{O} = 100 \text{ mA}, V_{I} = 6 \text{ to } 26 \text{ V}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	4.75	5	5.25	V
ΔV _O	Maximum operating input voltage Output voltage Output voltage Line regulation Load regulation Dropout voltage ^{(1) (2)} Quiescent current ON MODE OFF MODE Short circuit current Supply voltage rejection Control input voltage low Control input voltage high Inhibit input current Transient input voltage	V _I = 9 to 16 V		2	10	mV
ΔvO		V ₁ = 6 to 26 V		4	30	111V
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		15	50	mV
V	Dropout voltage (1) (2)	I _O = 10 mA		90	200	mV
V _d		I _O = 100 mA		250	600	IIIV
I _d		I _O = 100 mA		2.5	30	mA
	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 500 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	75		dB
V _{IL}	Control input voltage low	$T_{\rm J} = -40$ to 125°C		2	1.2	V
V _{IH}	Control input voltage high	$T_{\rm J} = -40$ to 125°C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R _{LOAD} = 500 Ω, τ < 100ms	60	70		V
VI	Reverse polarity input voltage	V_{O} = ± 0.3 V, R _{LOAD} = 500 Ω	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 500 Ω, τ < 100ms	-50			V
eN	Output noise voltage	B =10 Hz to 100 kHz		500		μV_{RMS}
		•				

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

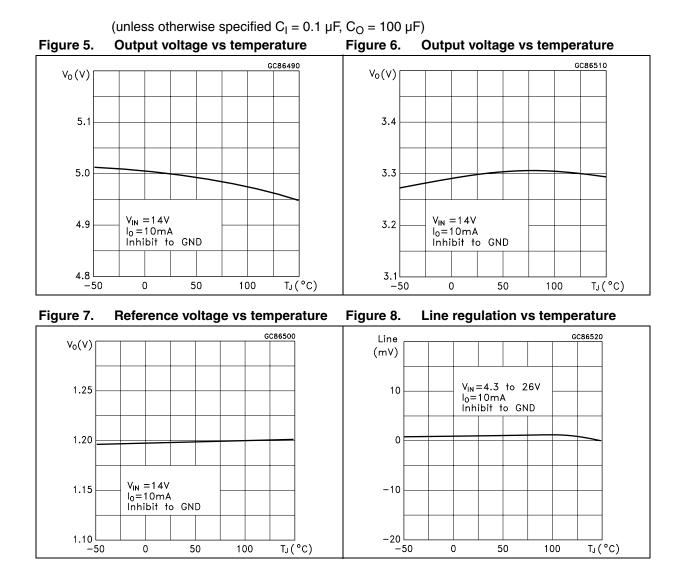
2. V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

Table 6. Electrical characteristics of LM2931Bxx50 (refer to the application circuit *Figure 3*, $T_J = 25 \text{ °C}$, $C_I = 0.1 \mu$ F, $C_O = 100 \mu$ F, $V_I = 14 \text{ V}$, $I_O = 10 \text{ mA}$, $V_{INH} = 0 \text{ V}$, unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	I _O = 10 mA, T _J = -40 to 125°C	26	37		V
Vo	Output voltage		4.75	5	5.25	V
V _O	Output voltage	$I_{O} = 100 \text{ mA}, V_{I} = 6 \text{ to } 26 \text{ V}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	4.5	5	5.5	V
A) /	Line regulation	V _I = 9 to 16 V		2	10	mV
ΔV_{O}	Line regulation	V ₁ = 6 to 26 V		4	30	IIIV
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		15	50	mV
M	Dropout voltage (1) (2)	I _O = 10 mA		90	200	mV
V _d		I _O = 100 mA		250	600	mv
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
-	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 500 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	75		dB
V_{IL}	Control input voltage low	$T_{\rm J} = -40$ to 125°C		2	1.2	V
V_{IH}	Control input voltage high	$T_{\rm J} = -40$ to 125°C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R_{LOAD} = 500 Ω, τ < 100ms	60	70		V
VI	Reverse polarity input voltage	$V_{O} = \pm 0.3 \text{ V}, \text{ R}_{LOAD} = 500 \Omega$	-15	-50		v
VI	Reverse polarity input voltage transient	R _{LOAD} = 500 Ω, τ < 100ms	-50			v
eN	Output noise voltage	B =10 Hz to 100 kHz		500		μV_{RMS}

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

2. V_d measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

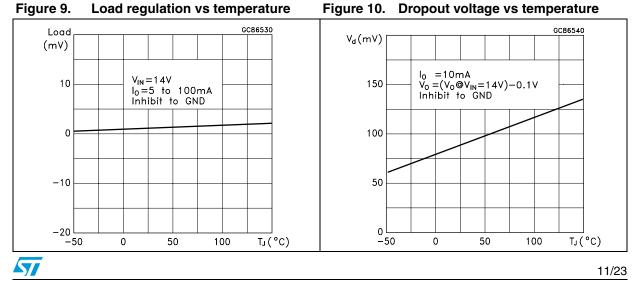

Table 7.Electrical characteristics of LM2931xx (refer to the application circuit Figure 4 with
 $R_1 = 27 \text{ K}\Omega$ and $R_2 = 40.5 \text{ k}\Omega$, $T_J = 25 \text{ °C}$, $C_I = 0.1 \mu\text{F}$, $C_O = 100 \mu\text{F}$, $V_I = 14 \text{ V}$, $I_O = 10 \text{ mA}$,
 $V_{INH} = 0 \text{ V}$, unless otherwise specified).

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VI	Maximum operating input voltage	$I_{O} = 10 \text{ mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	26	37		V
V _{REF}	Reference voltage (1)		1.14	1.2	1.26	V
V_{REF}	Reference voltage (1)	$I_{O} = 100 \text{ mA}, T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	1.08	1.2	1.32	V
ΔV_{O}	Line regulation	V ₁ = 3.6 to 26 V		0.6	4.5	mV
ΔV_{O}	Load regulation	I _O = 5 to 100 mA		9	30	mV
V	Dropout voltage (1) (2)	I _O = 10 mA		90	200	m\/
V _d		$I_0 = 100 \text{ mA}$		250	600	mV
I _d	Quiescent current ON MODE	I _O = 100 mA		2.5	30	mA
G	OFF MODE	V_{INH} = 2.5 V, R_{LOAD} = 300 Ω		0.3	1	mA
I _{SC}	Short circuit current		100	300		mA
SVR	Supply voltage rejection	$I_{O} = 100 \text{ mA}, V_{I} = 14 \pm 2 \text{ V}$ f = 120 Hz, T _J = -40 to 125°C	55	80		dB
V _{IL}	Control input voltage low	T _J = -40 to 125°C		2	1.2	V
V _{IH}	Control input voltage high	T _J = -40 to 125°C	3.25	2		V
I _{INH}	Inhibit input current	V _{INH} = 2.5 V		22	50	μA
VI	Transient input voltage	R _{LOAD} = 300 Ω, τ < 100ms	60	70		V
VI	Reverse polarity input voltage	$V_{O} = \pm 0.3$ V, $R_{LOAD} = 300 \ \Omega$	-15	-50		V
VI	Reverse polarity input voltage transient	R _{LOAD} = 300 Ω, τ < 100ms	-50			V
eN	Output noise voltage	B = 10 Hz to 100 kHz		330		μV_{RMS}

1. Reference voltage is measured from $V_{\mbox{OUT}}$ to ADJ pin.

2. $\,V_d$ measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V.

6 **Typical characteristics**

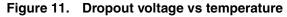


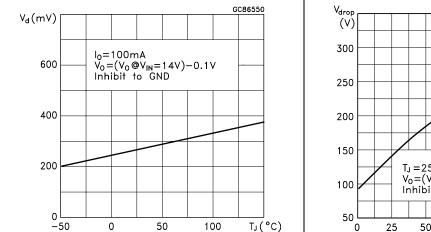
50

100

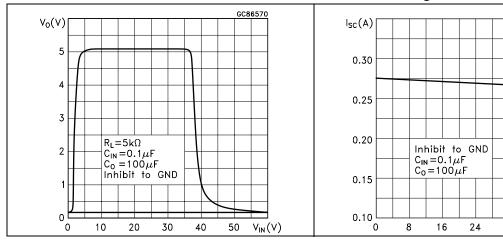
T_J(°C)

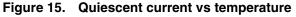
0




0

50


100


T_J(°C)

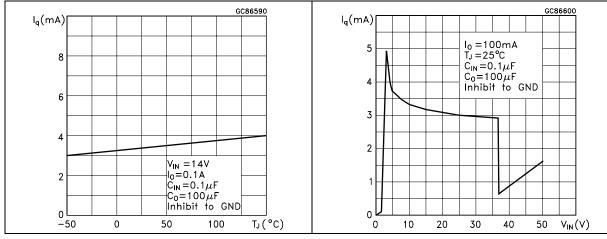
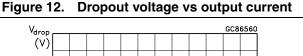
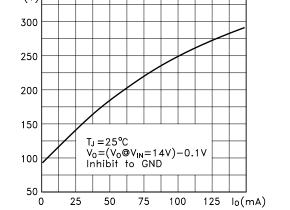
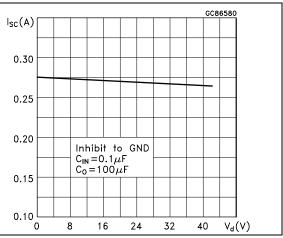
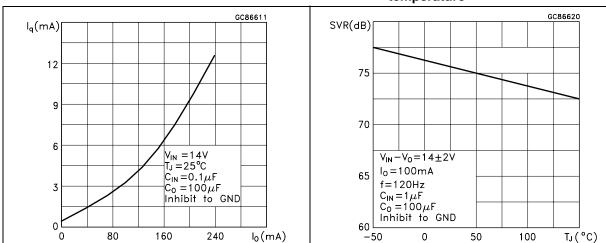



Figure 16.

Downloaded from Arrow.com.

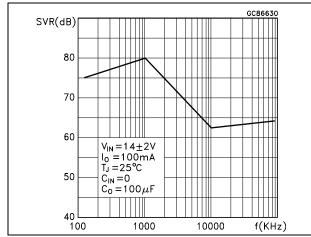




Figure 14. Short circuit current vs drop voltage

Quiescent current vs input voltage

57

GC86640



Supply voltage rejection vs Figure 17. Quiescent current vs output current Figure 18.

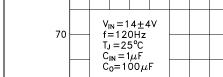
Figure 20. Supply voltage rejection vs output

Figure 19. Supply voltage rejection vs frequency

C_{IN}=0.1µF

 $ESR(\Omega)$

1.0


0.1

0.01

0

8

16

20

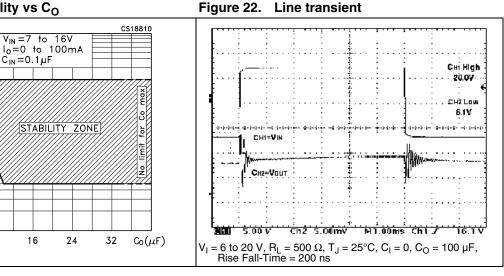
40

60

80

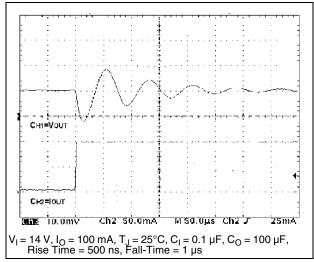
lo(mA)

current


SVR(dB)

80

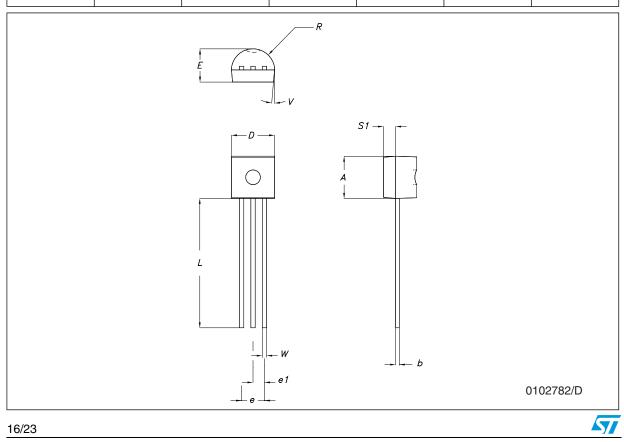
75


65

0

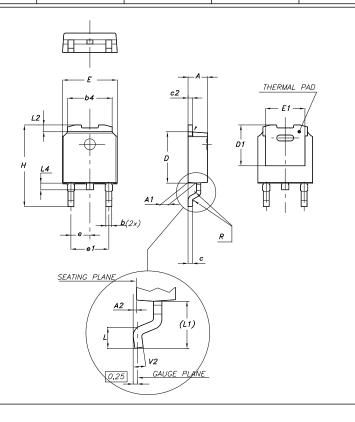
57

Figure 23. Line transient



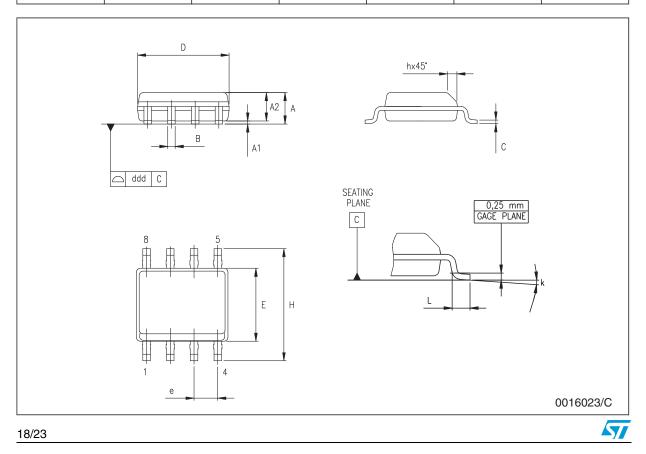
7 Package mechanical data

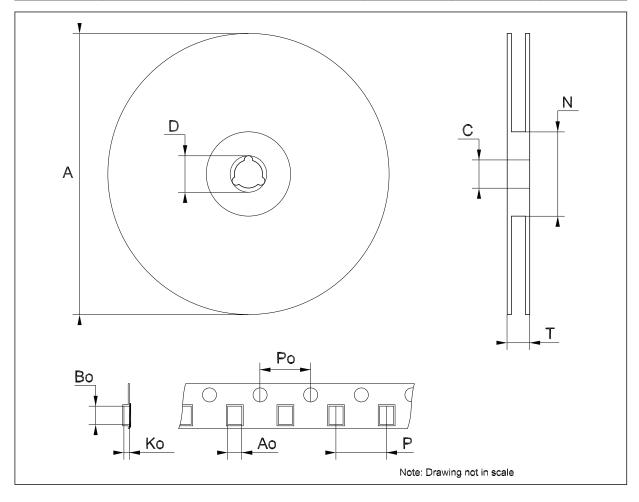
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.



	TO-92 mechanical data									
Dim.		mm.								
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.				
А	4.32		4.95	170.1		194.9				
b	0.36		0.51	14.2		20.1				
D	4.45		4.95	175.2		194.9				
E	3.30		3.94	129.9		155.1				
е	2.41		2.67	94.9		105.1				
e1	1.14		1.40	44.9		55.1				
L	12.7		15.49	500.0		609.8				
R	2.16		2.41	85.0		94.9				
S1	0.92		1.52	36.2		59.8				
W	0.41		0.56	16.1		22.0				
α		5°			5°					

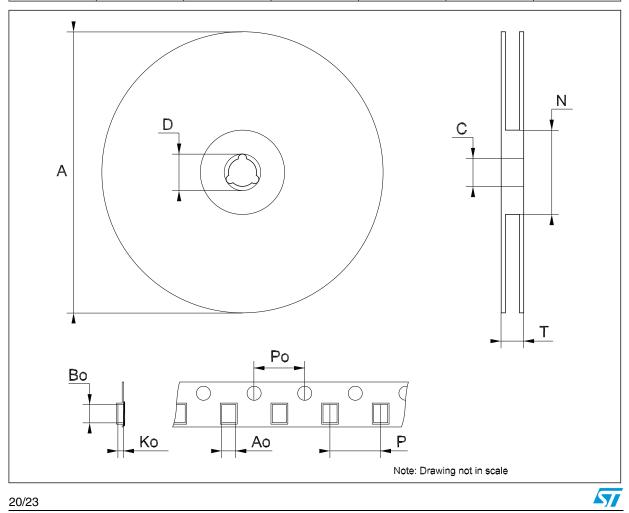
DPAK mechanical data


Dim.		mm.			inch.		
Diili.	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
b4	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L	1			0.039			
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	
R		0.2			0.008		
V2	0°		8°	0°		8°	

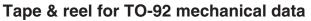

57

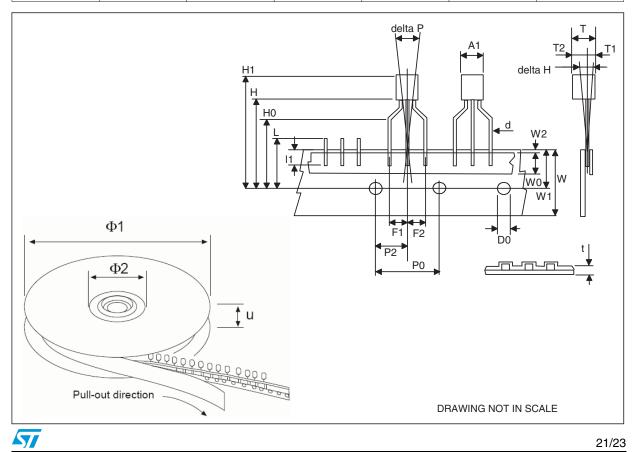
0068772-F

	SO-8 mechanical data								
Dim.		mm.		inch.					
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	1.35		1.75	0.053		0.069			
A1	0.10		0.25	0.04		0.010			
A2	1.10		1.65	0.043		0.065			
В	0.33		0.51	0.013		0.020			
С	0.19		0.25	0.007		0.010			
D	4.80		5.00	0.189		0.197			
E	3.80		4.00	0.150		0.157			
е		1.27			0.050				
н	5.80		6.20	0.228		0.244			
h	0.25		0.50	0.010		0.020			
L	0.40		1.27	0.016		0.050			
k			8° (n	nax.)					
ddd			0.1			0.04			



Dim.		mm.		inch.		
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319




Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A1		4.80			0.189	
Т		3.80			0.150	
T1		1.60			0.063	
T2		2.30			0.091	
d		0.48			0.019	
P0	12.5		12.9	0.492		0.508
P2	5.65		7.05	0.222		0.278
F1, F2	2.44	2.54	2.94	0.096	0.100	0.116
delta H		±2			0.079	
W	17.5	18.00	19.0	0.689	0.709	0.748
W0	5.7		6.3	0.224		0.248
W1	8.5		9.25	0.335		0.364
W2		0.50			0.20	
Н		18.50	18.70		0.728	0.726
H0	15.50		16.50	0.610		0.650
H1		25.00			0.984	
D0	3.8		4.2	0.150		0.165
t		0.90			0.035	
L1		3			0.118	
delta P		±1			0.039	
u		50			1.968	
Ф1		360			14.173	
Ф2		30			1.181	

8 Revision history

Date	Revision	Changes	
21-Jun-2004	12	Document updated.	
16-Jun-2006	13	Order codes updated.	
27-Jul-2007	14	Added Table 1 in cover page.	
21-Aug-2007	15	Added root part number - (see Table 1)	
22-Nov-2007	16	Modified: Table 1.	
11-Feb-2008	17	Modified: Table 1 on page 1.	
10-Jul-2008	18	Removed package TO-220, modified Table 1 on page 1.	

Table 8.Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

