**ON Semiconductor** 

Is Now

# Onsemi

To learn more about onsemi<sup>™</sup>, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

# **Small Signal MOSFET**

-20 V, -280 mA, P-Channel with ESD Protection, SOT-723

### Features

- Enables High Density PCB Manufacturing
- 44% Smaller Footprint than SC-89 and 38% Thinner than SC-89
- Low Voltage Drive Makes this Device Ideal for Portable Equipment
- Low Threshold Levels, 1.8 V R<sub>DS(on)</sub> Rating
- Low Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- Operated at Standard Logic Level Gate Drive, Facilitating Future Migration to Lower Levels Using the Same Basic Topology.
- This is a Pb–Free Device

#### Applications

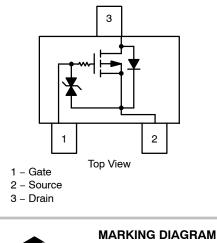
- Interfacing, Switching
- High Speed Switching
- Cellular Phones, PDA's

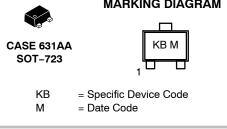
#### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise stated)

| Parame                                                            | Symbol                               | Value                 | Unit                  |      |      |       |
|-------------------------------------------------------------------|--------------------------------------|-----------------------|-----------------------|------|------|-------|
| Drain-to-Source Voltage                                           | V <sub>DSS</sub>                     | -20                   | V                     |      |      |       |
| Gate-to-Source Voltage                                            |                                      |                       | V <sub>GS</sub>       | ±8.0 | V    |       |
| Continuous Drain                                                  | Steady                               | T <sub>A</sub> = 25°C |                       | -260 |      |       |
| Current (Note 1)                                                  | State                                | T <sub>A</sub> = 85°C | I <sub>D</sub>        | -185 | mA   |       |
|                                                                   | t ≤ 5 s                              | T <sub>A</sub> = 25°C |                       | -280 | 1    |       |
| Power Dissipation                                                 | Steady                               |                       |                       | 400  |      |       |
| (Note 1)                                                          | State                                | T <sub>A</sub> = 25°C | PD                    |      | mW   |       |
|                                                                   | t ≤ 5 s                              |                       |                       | 500  |      |       |
| Continuous Drain                                                  |                                      | T <sub>A</sub> = 25°C | I <sub>D</sub>        | -215 | mA   |       |
| Current (Note 2)                                                  | Steady<br>State                      |                       | T <sub>A</sub> = 85°C |      | -155 | 110 ( |
| Power Dissipation<br>(Note 2)                                     |                                      | $T_A = 25^{\circ}C$   | P <sub>D</sub>        | 280  | mW   |       |
| Pulsed Drain Current                                              | t <sub>p</sub> =                     | 10 μs                 | I <sub>DM</sub>       | -310 | mA   |       |
| Operating Junction and Sto                                        | T <sub>J</sub> ,<br>T <sub>STG</sub> | –55 to<br>150         | °C                    |      |      |       |
| Source Current (Body Diod                                         | I <sub>S</sub>                       | -240                  | mA                    |      |      |       |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s) |                                      |                       | ΤL                    | 260  | °C   |       |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.





# **ON Semiconductor®**

#### http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> TYP | I <sub>D</sub> Max |
|----------------------|-------------------------|--------------------|
|                      | 2.7 Ω @ –4.5 V          |                    |
| –20 V                | 4.1 Ω @ –2.5 V          | –280 mA            |
|                      | 6.1 Ω @ –1.8 V          |                    |

SOT-723 (3-LEAD)





#### **ORDERING INFORMATION**

| Device      | Package              | Shipping <sup>†</sup>          |
|-------------|----------------------|--------------------------------|
| NTK3142PT1G | SOT-723<br>(Pb-Free) | 4000/Tape & Reel<br>4 mm Pitch |
| NTK3142PT5G | SOT-723<br>(Pb-Free) | 8000/Tape & Reel<br>2 mm Pitch |

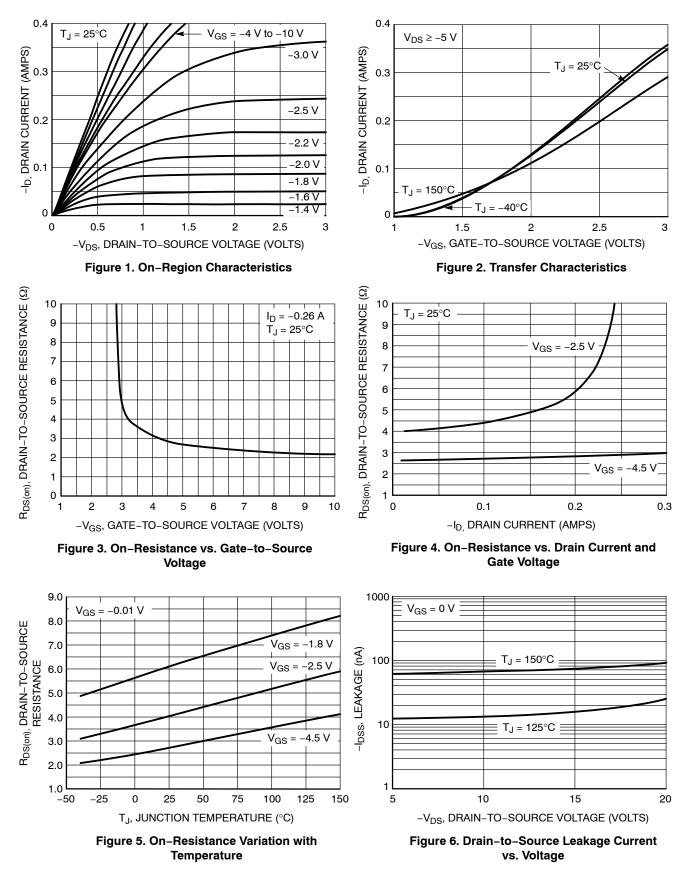
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

#### THERMAL RESISTANCE RATINGS

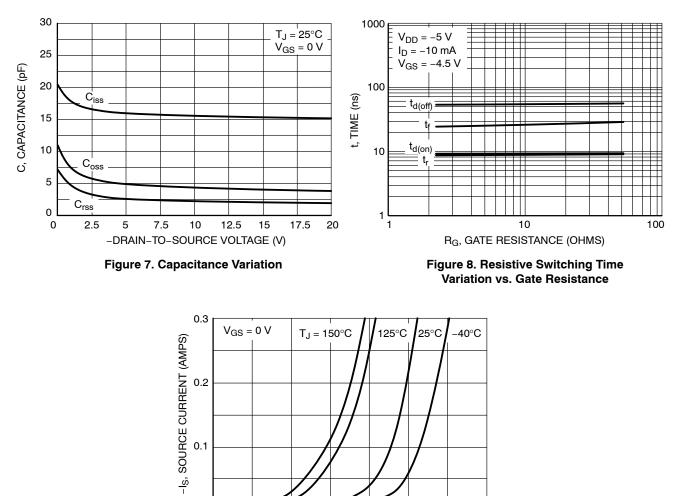
| Parameter                                               | Symbol          | Мах | Unit |
|---------------------------------------------------------|-----------------|-----|------|
| Junction-to-Ambient - Steady State (Note 3)             | $R_{\theta JA}$ | 315 |      |
| Junction-to-Ambient - t = 5 s (Note 3)                  | $R_{	hetaJA}$   | 250 | °C/W |
| Junction-to-Ambient - Steady State Minimum Pad (Note 4) | $R_{\theta JA}$ | 440 |      |

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
Surface-mounted on FR4 board using the minimum recommended pad size.

#### MOSEET ELECTRICAL CHARACTERISTICS (T. - 25°C unless otherwise specified)


| Parameter                                                    | Symbol                               | Test Condition                                                              |                        | Min  | Тур  | Max  | Unit  |
|--------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|------------------------|------|------|------|-------|
| OFF CHARACTERISTICS                                          |                                      |                                                                             |                        |      | -    |      | -     |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                 | $V_{GS} = 0 V, I_D = -$                                                     | 100 μA                 | -20  |      |      | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /T <sub>J</sub> | $I_D = -100 \ \mu A$ , Reference to 25°C                                    |                        |      | 14   |      | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                     | $V_{GS} = 0 V,$ $T_{J} = 25^{\circ}C$                                       |                        |      | -1.0 |      |       |
|                                                              |                                      | $V_{DS} = -16 V$                                                            | T <sub>J</sub> = 125°C |      |      | -2.0 | μΑ    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                     | V <sub>DS</sub> = 0 V, V <sub>GS</sub> =                                    | = ±5 V                 |      |      | ±1   | μΑ    |
| ON CHARACTERISTICS (Note 5)                                  |                                      |                                                                             |                        |      |      |      |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                  | $V_{GS}$ = $V_{DS}$ , $I_D$ = -250 $\mu$ A                                  |                        | -0.4 |      | -1.3 | V     |
| Gate Threshold Temperature<br>Coefficient                    | V <sub>GS(TH)</sub> /T <sub>J</sub>  |                                                                             |                        |      | -2.0 |      | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(ON)</sub>                  | V <sub>GS</sub> = -4.5V, I <sub>D</sub> = -260 mA                           |                        |      | 2.9  | 4.0  | Ω     |
| Drain-to-Source On Resistance                                | R <sub>DS(ON)</sub>                  | V <sub>GS</sub> = -4.5V, I <sub>D</sub> = -10 mA                            |                        |      | 2.7  | 3.4  |       |
|                                                              |                                      | V <sub>GS</sub> = -2.5 V, I <sub>D</sub> = -1 mA                            |                        | 4.1  | 5.3  | Ω    |       |
|                                                              |                                      | $V_{GS} = -1.8 \text{ V}, I_D = -1 \text{ mA}$                              |                        |      | 6.1  | 10   |       |
| Forward Transconductance                                     | <b>9</b> FS                          | $V_{DS} = -5 \text{ V}, \text{ I}_{D} = -10 \text{ mA}$                     |                        |      | 73   |      | mS    |
| CAPACITANCES                                                 |                                      |                                                                             |                        |      |      |      |       |
| Input Capacitance                                            | C <sub>ISS</sub>                     | $V_{GS}$ = 0 V, f = 1 MHz, $V_{DS}$ = –10 V                                 |                        |      | 15.3 |      |       |
| Output Capacitance                                           | C <sub>OSS</sub>                     |                                                                             |                        |      | 4.3  |      | pF    |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                     |                                                                             |                        |      | 2.3  |      |       |
| SWITCHING CHARACTERISTICS, V <sub>G</sub>                    | s = 4.5 V (Note 6                    | 3)                                                                          |                        |      |      |      |       |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                   |                                                                             |                        |      | 8.4  | 16   |       |
| Rise Time                                                    | t <sub>r</sub>                       | $V_{GS}$ = -4.5 V, $V_{DD}$ = -5 V, $I_{D}$ = -100 mA, $R_{G}$ = 6 $\Omega$ |                        |      | 15.3 | 28   |       |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                  |                                                                             |                        |      | 37.5 | 80   | ns    |
| Fall Time                                                    | t <sub>f</sub>                       |                                                                             |                        |      | 22.7 | 43   |       |

#### **DRAIN-SOURCE DIODE CHARACTERISTICS**


| Forward Diode Voltage   | V <sub>SD</sub> | V <sub>GS</sub> = 0 V, I <sub>S</sub> = –10 mA                                      | $T_J = 25^{\circ}C$    | 0.69 | -1.2 | V  |
|-------------------------|-----------------|-------------------------------------------------------------------------------------|------------------------|------|------|----|
|                         |                 | $v_{\rm GS} = 0$ $v, v_{\rm S} = -10$ mA                                            | T <sub>J</sub> = 125°C | 0.56 |      | v  |
| Reverse Recovery Time   | t <sub>RR</sub> |                                                                                     |                        | 37   | 80   |    |
| Charge Time             | t <sub>a</sub>  | $V_{GS}$ = 0 V, $V_{DD}$ = -20 V,<br>dI_{SD}/dt = 100 A/µs, I <sub>S</sub> = -1.0 A |                        | 15.9 | 30   | ns |
| Discharge Time          | t <sub>b</sub>  |                                                                                     |                        | 21.1 | 50   |    |
| Reverse Recovery Charge | Q <sub>RR</sub> |                                                                                     |                        | 20   | 70   | nC |

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

#### **TYPICAL PERFORMANCE CURVES**



## **TYPICAL PERFORMANCE CURVES**



1.1

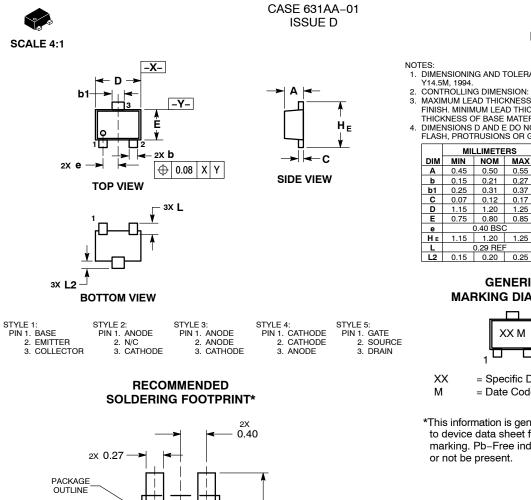
1.0

0.1

0 0.4

0.5

0.6


0.7

-V<sub>SD</sub>, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Figure 9. Diode Forward Voltage vs. Current

0.8

0.9





1.50

0.36 DIMENSIONS: MILLIMETERS

SOT-723

#### DATE 10 AUG 2009

# DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MILLIMETERS MIN NOM MAX 0.45 0.50 0.55 0.27 0.37 0.17 1.25

#### GENERIC **MARKING DIAGRAM\***

|   | ХХ М |
|---|------|
| 1 |      |

= Specific Device Code = Date Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98AON12989D      | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOT-723 PAGE 1 O |                                                                                                                                                                                     |  |  |  |
| ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the |                  |                                                                                                                                                                                     |  |  |  |

© Semiconductor Components Industries, LLC, 2019

зх 0.52

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

#### North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥