MOSFET - Power, N-Channel, UltraFET

55 V, 75 A, 7 m Ω

HUF75345G3, HUF75345P3, HUF75345S3S

Description

These N -Channel power MOSFETs are manufactured using the innovative UltraFET process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Features

- 75 A, 55 V
- Simulation Models
- Temperature Compensated PSPICE ${ }^{\text {TM }}$ and SABER ${ }^{\circledR}$ Models
- Thermal Impedance SPICE and SABER Models
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- These Devices are Pb -Free

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

$\mathbf{V}_{\text {DSS }}$	$\mathbf{R}_{\text {DS(ON) }}$ MAX	$\mathbf{I}_{\mathbf{D}}$ MAX
55 V	$7 \mathrm{~m} \Omega$	75 A

MARKING DIAGRAM

$\$ Y$	$=$ ON Semiconductor Logo
$\& Z$	$=$ Assembly Plant Code
$\& 3$	$=$ Data Code (Year \& Week)
$\& K$	$=$ Lot
$75345 X$	$=$ Specific Device Code
	$X=G / P / S$

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Brand
HUF75345G3	TO-247-3	75345 G
HUF75345P3	TO-220-3	75345 P
HUF75345S3ST	D2PAK-3	75345 S

MOSFET MAXIMUM RATINGS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$, Unless otherwise noted)

Symbol		Parameter	Value	Unit
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage (Note 1)		55	V
$V_{\text {DGR }}$	Drain to Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$) (Note 1)		55	V
V_{GS}	Gate to Source Voltage		± 20	V
I_{D}	Drain Current	- Continuous (Figure 2)	75	A
IDM	Drain Current	- Pulsed	Figure 4	
$\mathrm{E}_{\text {AS }}$	Pulsed Avalanche Rating		Figure 6	
P_{D}	Power Dissipation	($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	325	W
		- Derate Above $25^{\circ} \mathrm{C}$	2.17	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature		-55 to +175	${ }^{\circ} \mathrm{C}$
T_{L}	Maximum Temperature for Soldering Leads at 0.063 in (1.6 mm) from Case for 10 s		300	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{pkg}}$	Maximum Temperature for Soldering Leads Package Body for 10 s		260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
OFF STATE CHARACTERISTICS						
BV ${ }_{\text {DSS }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ (Figure 11)	55			V
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=45 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$			250	
$\mathrm{I}_{\text {GSS }}$	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA

ON STATE CHARACTERISTICS

$\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$ (Figure 10)	2		4.0	V
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$ (Figure 9)		0.006	0.007	Ω

THERMAL CHARACTERISTICS

$\mathrm{R}_{\theta \mathrm{JC}}$	Thermal Resistance Junction to Case	(Figure 3)			0.46
$\mathrm{R}_{\theta \mathrm{JA}}$	Thermal Resistance Junction to Ambient	TO-247	${ }^{\circ} \mathrm{C} / \mathrm{W}$		
	Thermal Resistance Junction to Ambient	TO-220, D2PAK			30
${ }^{\circ} \mathrm{C} / \mathrm{W}$					

SWITCHING CHARACTERISTICS ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)

ton	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{L}}=0.4 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=2.5 \Omega \end{aligned}$		195	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		14		ns
t_{r}	Rise Time		118		ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		42		ns
t_{f}	Fall Time		26		ns
toff	Turn-Off Time			98	ns

GATE CHARGE CHARACTERISTICS

$\mathrm{Q}_{\mathrm{g} \text { (tot) }}$	Total Gate Charge	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0.4 \Omega, \\ & \mathrm{I}_{\mathrm{g}(\mathrm{REF})}=1.0 \mathrm{~mA} \text { (Figure 13) } \end{aligned}$	220	275	nC
$\mathrm{Q}_{\mathrm{g}(10)}$	Gate Charge at 10 V	$\begin{aligned} & \hline V_{G S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0.4 \Omega, \\ & \mathrm{I}_{\mathrm{g}(\mathrm{REF})}=1.0 \mathrm{~mA} \text { (Figure 13) } \end{aligned}$	125	165	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{th})}$	Threshold Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} \text { to } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0.4 \Omega, \\ & \mathrm{I}_{\mathrm{g}(\mathrm{REF})}=1.0 \mathrm{~mA} \text { (Figure 13) } \end{aligned}$	6.8	10	nC
Q_{gs}	Gate to Source Gate Charge	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0.4 \Omega, \\ & \mathrm{I}_{\mathrm{g}(\mathrm{REF})}=1.0 \mathrm{~mA} \text { (Figure 13) } \end{aligned}$	14		nC
$Q_{\text {gd }}$	Gate to Drain "Miller" Charge		58		nC

CAPACITANCE CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{Mhz}$ (Figure 12)	4000	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		1450	pF
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		450	pF

SOURCE TO DRAIN DIODE CHARACTERISTICS

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}$			1.25	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{~d} \mathrm{I}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$			55	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=75 \mathrm{~A}, \mathrm{~d} \mathrm{I}_{\mathrm{SD}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$			80	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

HUF75345G3, HUF75345P3, HUF75345S3S

TYPICAL PERFORMANCE CURVES
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs Case Temperature

Figure 3. Normalized Maximum Transient Thermal Impedance

Figure 4. Peak Current Capability

HUF75345G3, HUF75345P3, HUF75345S3S

TYPICAL CHARACTERISTICS (Continued)
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

V_{DS}, DRAIN TO SOURCE VOLTAGE (V)
Figure 5. Forward Bias Safe Operating Area

Figure 7. Saturation Characteristics

Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature

NOTE: Refer to ON Semiconductor Application Notes AN-7514 and AN-7515

Figure 6. Unclamped Inductive Switching Capability

Figure 8. Transfer Characteristics

Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature

HUF75345G3, HUF75345P3, HUF75345S3S

TYPICAL CHARACTERISTICS (Continued)
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 11. Normalized Drain to Source Breakdown vs. Junction Temperature

Figure 12. Capacitance vs. Drain to Source Voltage

Figure 13. Gate Charge Waveforms for Constant Gate Currents

HUF75345G3, HUF75345P3, HUF75345S3S

TEST CIRCUITS WAVEFORMS

Figure 14. Unclamped Energy Test Circuit

Figure 16. Gate Charge Test Circuit

Figure 15. Unclamped Energy Waveforms

Figure 17. Gate Charge Waveforms

Figure 19. Resistive Switching Waveforms

PSPICE Electrical Model

.SUBCKT HUF75345 213 ; rev 3 Feb 99
CA $1285.55 \mathrm{e}-9$
CB $15145.55 \mathrm{e}-9$
CIN 68 3.45e-9
DBODY 75 DBODYMOD
DBREAK 511 DBREAKMOD
DPLCAP 105 DPLCAPMOD
EBREAK 117171856.7
EDS 148581
EGS 138681
ESG 610681
EVTHRES 6211981
EVTEMP 20618221
IT 8171
LDRAIN 25 1e-9
LGATE 19 2.6e-9
LSOURCE 37 1.1e-9
KGATE LSOURCE LGATE 0.0085
MMED 16688 MMEDMOD
MSTRO 16688 MSTROMOD
MWEAK 162188 MWEAKMOD
RBREAK 1718 RBREAKMOD 1
RDRAIN 5016 RDRAINMOD 1e-4
RGATE 9200.36
RLDRAIN 2510
RLGATE 1926
RLSOURCE 3711
RSLC1 551 RSLCMOD 1e-6
RSLC2 5501 e 3
RSOURCE 87 RSOURCEMOD 3.15e-3
RVTHRES 228 RVTHRESMOD 1
RVTEMP 1819 RVTEMPMOD 1
S1A 612138 S1AMOD
S1B 1312138 S1BMOD
S2A 6151413 S2AMOD
S2B 13151413 S2BMOD
VBAT 2219 DC 1
$\operatorname{ESLC} 5150 \operatorname{VALUE}=\left\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51)))^{*}(\operatorname{PWR}(\mathrm{~V}(5,51) /(1 \mathrm{e}-6 * 500), 3.5))\right\}$
.$M O D E L$ DBODYMOD D (IS $=6 \mathrm{e}-12 \mathrm{RS}=1.4 \mathrm{e}-3 \mathrm{IKF}=20 \mathrm{XTI}=5 \mathrm{TRS} 1=2.75 \mathrm{e}-3 \mathrm{TRS} 2=5.0 \mathrm{e}-6 \mathrm{CJO}=5.5 \mathrm{e}-9 \mathrm{TT}=$ $5.9 \mathrm{e}-8 \mathrm{M}=0.5 \mathrm{VJ}=0.75$)
.MODEL DBREAKMOD D (RS = 2.8e-2 IKF $=30$ TRS1 $=-4.0 \mathrm{e}-3 \mathrm{TRS} 2=1.0 \mathrm{e}-6)$
.MODEL DPLCAPMOD D (CJO $=6.75 \mathrm{e}-9 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{M}=0.88 \mathrm{VJ}=1.45 \mathrm{FC}=0.5)$

. MODEL MSTROMOD NMOS ($\mathrm{VTO}=3.23 \mathrm{KP}=96 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u}$ Lambda = 0.06)
.MODEL MWEAKMOD NMOS ($\mathrm{VTO}=2.35 \mathrm{KP}=0.02 \mathrm{IS}=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{TOX}=1 \mathrm{~L}=1 \mathrm{u} \mathrm{W}=1 \mathrm{u} \mathrm{RG}=3.6$)
.MODEL RBREAKMOD RES ($\mathrm{TC} 1=8.0 \mathrm{e}-4 \mathrm{TC} 2=4.0 \mathrm{e}-6$)
.MODEL RDRAINMOD RES $(\mathrm{TC} 1=1.5 \mathrm{e}-1 \mathrm{TC} 2=6.5 \mathrm{e}-4)$

HUF75345G3, HUF75345P3, HUF75345S3S

.MODEL RSLCMOD RES (TC1 $=1.0 \mathrm{e}-4 \mathrm{TC} 2=1.05 \mathrm{e}-6)$
.MODEL RSOURCEMOD RES (TC1 $=1.0 \mathrm{e}-3 \mathrm{TC} 2=0$)
.MODEL RVTHRESMOD RES (TC1 $=-1.5 \mathrm{e}-3 \mathrm{TC} 2=-2.6 \mathrm{e}-5)$
.MODEL RVTEMPMOD RES (TC1 $=-2.75 \mathrm{e}-3 \mathrm{TC} 2=1.45 \mathrm{e}-6$)
.MODEL S1AMOD VSWITCH $($ RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=-9.00 \mathrm{VOFF}=-4.00)$
.MODEL S1BMOD VSWITCH (RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=-4.00 \mathrm{VOFF}=-9.00)$
.MODEL S2AMOD VSWITCH (RON $=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=0.00 \mathrm{VOFF}=0.50)$
.MODEL S2BMOD VSWITCH $(\mathrm{RON}=1 \mathrm{e}-5 \mathrm{ROFF}=0.1 \mathrm{VON}=0.50 \mathrm{VOFF}=0.00)$
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

Figure 20. PSPICE Electrical Model

SABER Electrical Model

REV 3 February 1999
template huf75345 n2, n1, n3
electrical n2, n1, n3
\{
var i iscl
d.. model dbodymod $=($ is $=6 \mathrm{e}-12, \mathrm{xti}=5, \mathrm{cjo}=5.5 \mathrm{e}-9, \mathrm{tt}=5.9 \mathrm{e}-8, \mathrm{~m}=0.5, \mathrm{vj}=0.75)$
d.. model dbreakmod $=()$
d.. model dplcapmod $=(\operatorname{cjo}=6.75 \mathrm{e}-9$, is $=1 \mathrm{e}-30, \mathrm{~m}=0.88, \mathrm{vj}=1.45, \mathrm{fc}=0.5)$
m. . model mmedmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=2.93, \mathrm{kp}=13.75$, is $=1 \mathrm{e}-30$, tox $=1$)
m.. model mstrongmod $=\left(\right.$ type $=_\mathrm{n}$, vto $=3.23, \mathrm{kp}=96$, is $=1 \mathrm{e}-30$, tox $=1$,
lambda $=0.06$)
m.. model mweakmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=2.35, \mathrm{kp}=0.02$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
sw_vcsp..model s1amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-9$, voff $=-4)$
sw_vcsp..model s1bmod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-4$, voff $=-9)$
sw_vcsp..model s2amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=0, \operatorname{voff}=0.5)$
sw_vcsp..model s2bmod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=0.5$, voff $=0)$
c.ca $\mathrm{n} 12 \mathrm{n} 8=5.55 \mathrm{e}-9$
c.cb n15 n14 $=5.55 \mathrm{e}-9$
c.cin $\mathrm{n} 6 \mathrm{n} 8=3.45 \mathrm{e}-9$
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
1.ldrain n2 n5 $=1 \mathrm{e}-9$
l.lgate n1 n9 $=2.6 \mathrm{e}-9$
1.1source n3 n7 = 1.1e-9
k.k1 i(l.lgate) $\mathrm{i}(1.1$ source $)=1($ l.lgate $), 1$ (1.lsource $), 0.0085$
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
res.rbreak n17 n18 $=1$, tc1 $=8 \mathrm{e}-4$, tc2 $=4 \mathrm{e}-6$
res.rdbody n71 n5 $=1.4 \mathrm{e}-3$, tc $1=2.75 \mathrm{e}-3$, tc $2=5 \mathrm{e}-6$
res.rdbreak n72 n5 $=2.8 \mathrm{e}-2$, tc1 $=-4 \mathrm{e}-3$, tc2 $=1 \mathrm{e}-6$
res.rdrain n50 n16 $=1 \mathrm{e}-4$, tc1 $=1.5 \mathrm{e}-1, \mathrm{tc} 2=6.5 \mathrm{e}-4$
res.rgate $\mathrm{n} 9 \mathrm{n} 20=0.36$
res.rldrain n2 n5 $=10$
res.rlgate $\mathrm{n} 1 \mathrm{n} 9=26$
res.rlsource n3 n7 = 11
res.rslc1 n5 n $51=1 \mathrm{e}-6$, tc $1=1 \mathrm{e}-4$, tc2 $=1.05 \mathrm{e}-6$
res.rslc $2 \mathrm{n} 5 \mathrm{n} 50=1 \mathrm{e} 3$
res.rsource $\mathrm{n} 8 \mathrm{n} 7=3.15 \mathrm{e}-3$, tc $1=1 \mathrm{e}-3$, tc2 $=0$
res.rvtemp n18 n19 = 1, tc1 $=-2.75 \mathrm{e}-3$, tc $2=1.45 \mathrm{e}-6$
res.rvthres $\mathrm{n} 22 \mathrm{n} 8=1$, tc1 $=-1.5 \mathrm{e}-3$, tc2 $=-2.6 \mathrm{e}-5$
spe.ebreak n11 n7n17n18 $=56.7$
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1

HUF75345G3, HUF75345P3, HUF75345S3S

sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc $=1$
equations \{
i (n51->n50) + = iscl
iscl: $\mathrm{v}(\mathrm{n} 51, \mathrm{n} 50)=\left((\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51) /(1 \mathrm{e}-9+\mathrm{abs}(\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51))))^{*}\left(\left(\operatorname{abs}\left(\mathrm{v}(\mathrm{n} 5, \mathrm{n} 51)^{*} 1 \mathrm{e} 6 / 500\right)\right)^{* *} 3.5\right)\right)$
\}
\}

Figure 21. SABER Electrical Model

SPICE Thermal Model

REV 5 February 1999
HUF75345
CTHERM1 th 6 6.3e-3
CTHERM2 65 1.5e-2
CTHERM3 54 2.0e-2
CTHERM4 43 3.0e-2
CTHERM5 32 8.0e-2
CTHERM6 2 tl $1.5 \mathrm{e}-1$
RTHERM1 th $65.0 \mathrm{e}-3$
RTHERM2 65 1.8e-2
RTHERM3 54 5.0e-2
RTHERM4 43 8.5e-2
RTHERM5 $321.0 \mathrm{e}-1$
RTHERM6 2 tl 1.1e-1

SABER Thermal Model

SABER thermal model HUF75345

```
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6=6.3e-3
ctherm.ctherm2 65=1.5e-2
ctherm.ctherm354=2.0e-2
ctherm.ctherm443=3.0e-2
ctherm.ctherm5 32=8.0e-2
ctherm.ctherm6 2 tl=1.5e-1
rtherm.rtherm1 th 6 = 5.0e-3
rtherm.rtherm2 65=1.8e-2
rtherm.rtherm354=5.0e-2
rtherm.rtherm443=8.5e-2
rtherm.rtherm5 32=1.0e-1
rtherm.rtherm6 2 tl=1.1e-1
}
```


Figure 22. Thermal Model

Scale 1:1

TO-220-3LD
CASE 340AT
ISSUE A

SUPPLIER "A" PACKAGE SHAPE

DATE 03 OCT 2017

NOTES:

A) REFERENCE JEDEC, TO-220, VARIATION AB
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED [].
D) LOCATION OF MOLDED FEATURE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE)
E DOES NOT COMPLY JEDEC STANDARD VALUE.
F) "A1" DIMENSIONS AS BELOW:

SINGLE GAUGE $=0.51-0.61$
DUAL GAUGE $=1.10-1.45$
G PRESENCE IS SUPPLIER DEPENDENT
H) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK.

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220-3LD	PAGE 1 OF 1	

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

TO-247-3LD SHORT LEAD CASE 340CK ISSUE A

DATE 31 JAN 2019

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

	AYWWZZ XXXXXXX XXXXXXX -
XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
ZZ	$=$ Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

[^0] rights of others.

D²PAK-3 (TO-263, 3-LEAD)
 CASE 418AJ
 ISSUE F

notes

1. Dimensinaing and tdlerancing per ASME Y14.5M, 2009.
2. contraliing dimensinn inches
3. CHAMFER DPTIINAL.
4. DIMENSIONS D AND E DO NDT INCLUDE MDLD FLASH. MILD FLASH SHALL NDT EXCEED 0.005 PER SIDE. these dimensians are measured at the dutermast EXTREMES aF THE PLASTIC BZDY AT DATUM H.
5. THERMAL PAD CONTIUR IS OPTIONAL WITHIN DIMENSIDNS E, L1, D1, AND E1.
6. IPTIONAL MILD FEATURE.
7. © , © ... םPTIONAL CINSTRUCTIIN FEATURE CALL DUTS.

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
c	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260	---	6.60	---
E	0.380	0.420	9.65	10.67
E1	0.245	---	6.22	---
e	0.100 BSC		2.54 BSC	
H	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1	---	0.066	---	1.68
L2	---	0.070	---	1.78
L3	0.010 BSC		0.25 BSC	
M	0°	8°	0°	8°

DETAIL C
TIP LEADFRRM
ROTATED $90^{\circ} \mathrm{CW}$

VIEW A-A

VIEW A-A

DATE 11 MAR 2021

DPTIDNAL CDNSTRUCTIDNS
GENERIC MARKING DIAGRAMS*

IC

Standard

Rectifier

SSG

XXXXXX = Specific Device Code
A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
W = Week Code (SSG)
M = Month Code (SSG)
$\mathrm{G}=\mathrm{Pb}-$ Free Package
AKA = Polarity Indicator
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " \quad ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56370E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red.

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (01) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

