ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Power MOSFET

25 V, 193 A, Single N–Channel, SO–8FL Features

- Optimized Design to Minimize Conduction and Switching Losses
- Optimized Package to Minimize Parasitic Inductances
- Optimized material for improved thermal performance
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Performance DC-DC Converters
- System Voltage Rails
- Netcom, Telecom
- Servers & Point of Load

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter Symbol Value				
Parameter	Symbol	value	Units	
Drain-to-Source Voltage	V _{DSS}	25	V	
Gate-to-Source Voltage	V _{GS}	±20	V	
Continuous Drain Current $R_{\theta JA}$ (T _A = 25°C, Note 1)	۱ _D	37	A	
Power Dissipation $R_{\theta JA}$ (T _A = 25°C, Note 1)	P _D	3.13	W	
Continuous Drain Current $R_{\theta JC}$ (T _C = 25°C, Note 1)	۱ _D	193	A	
Power Dissipation $R_{\theta JC}$ (T _C = 25°C, Note 1)	P _D	83	W	
Pulsed Drain Current ($t_p = 10 \ \mu s$)	I _{DM}	412	А	
Single Pulse Drain-to-Source Avalanche Energy (Note 1) (I_L = 47 A _{pk} , L = 0.3 mH)	E _{AS}	331	mJ	
Drain to Source dV/dt	dV/dt	7	V/ns	
Maximum Junction Temperature	T _{J(max)}	150	°C	
Storage Temperature Range	T _{STG}	–55 to 150	°C	
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 2)	T _{SLD}	260	°C	

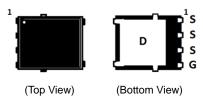
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Values based on copper area of 645 mm² (or 1 in²) of 2 oz copper thickness and FR4 PCB substrate.
- 2. For more information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. This is the absolute maximum rating. Parts are 100% UIS tested at $T_J = 25^{\circ}$ C,
- 3. $V_{GS} = 10 \text{ V}, I_1 = 31 \text{ A}, E_{AS} = 144 \text{ mJ}.$

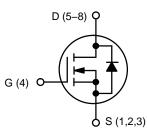
THERMALCHARACTERISTICS

Parameter	Symbol	Мах	Units
Thermal Resistance, Junction-to-Ambient (Note 1 and 4) Junction-to-Case (Note 1 and 4)	$R_{ hetaJA}\ R_{ hetaJC}$	40.0 1.5	°C/W

4. Thermal Resistance $R_{\theta JA}$ and $R_{\theta JC}$ as defined in JESD51–3.


ON Semiconductor®

http://onsemi.com


V _{GS}	MAX R _{DS(on)}	TYP Q _{GTOT}
4.5 V	2.2 mΩ	18 nC
10 V	1.4 m Ω	38.5 nC

PIN CONNECTIONS

SO8-FL (5 x 6 mm)

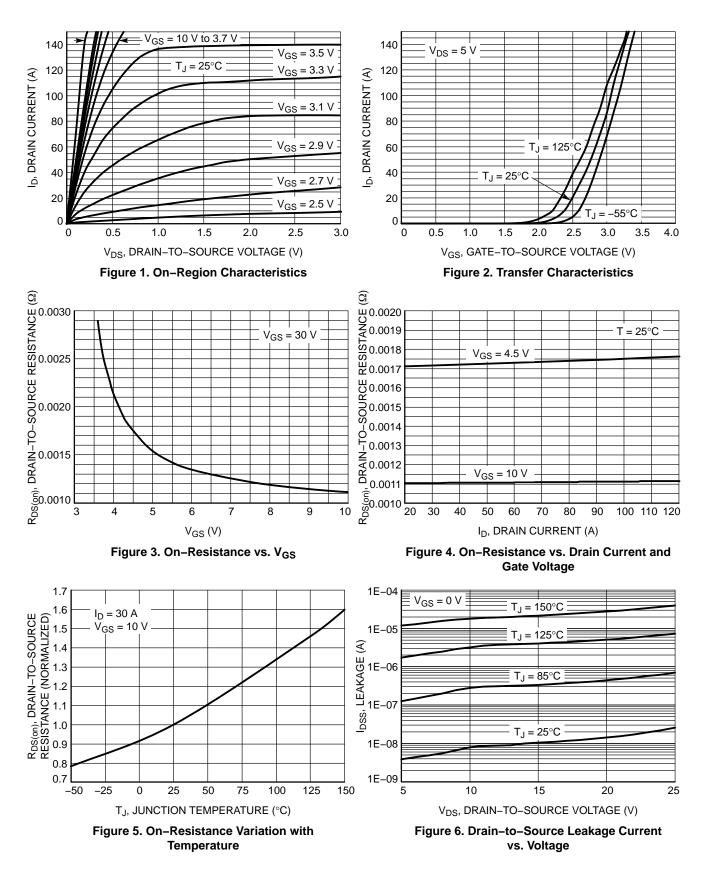
N-CHANNEL MOSFET

ORDERING INFORMATION

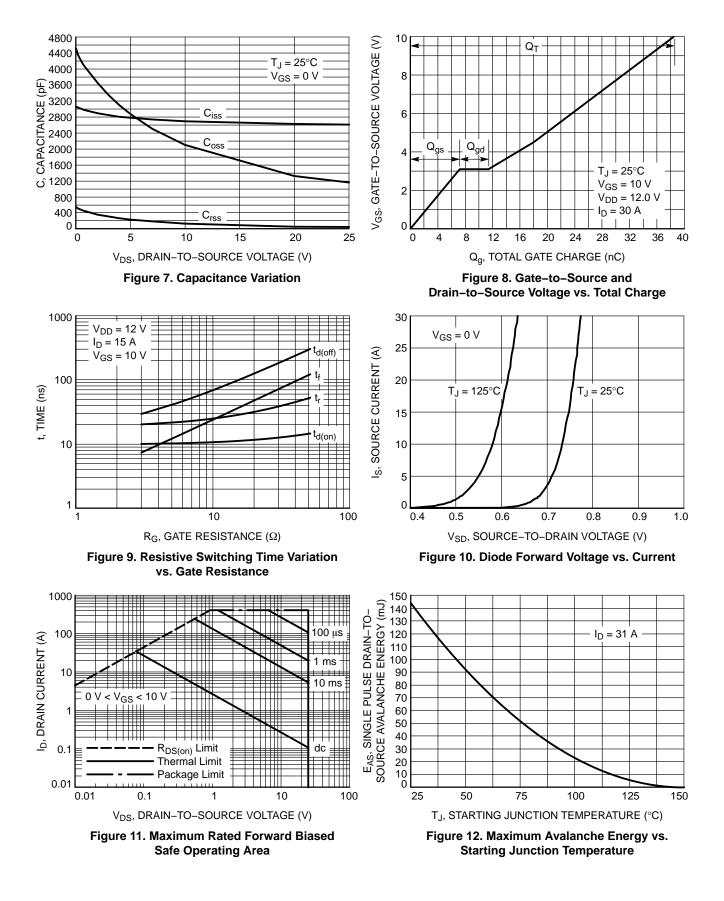
See detailed ordering and shipping information on page 7 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

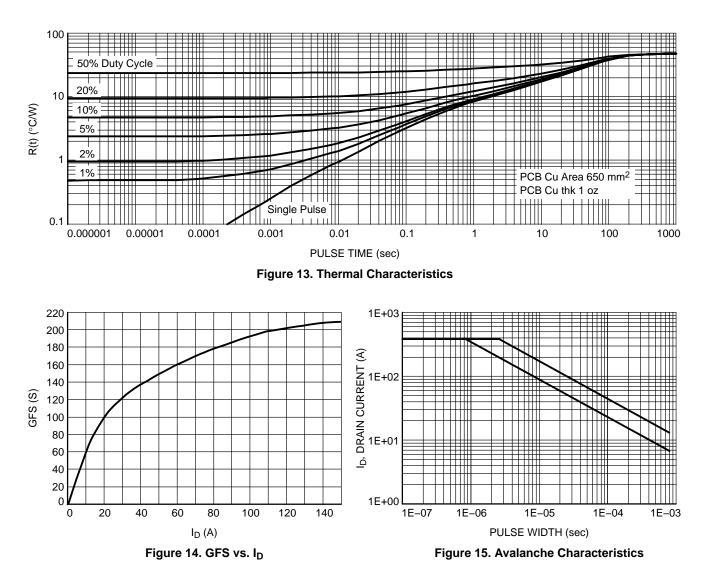
Parameter	Symbol	Test Cond	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS	_				_	_	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 250 \mu A$		25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				18.5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1	
		V _{DS} = 20 V	T _J = 125°C			20	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = 20 V			100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		1.2		2.1	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		1.1	1.4	
		V _{GS} = 4.5 V	I _D = 30 A		1.7	2.2	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 12 V, I _D) = 15 A		84		S
CHARGES, CAPACITANCES & GATE RESIS	STANCE						
Input Capacitance	C _{ISS}				2651		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	z, V _{DS} = 12 V		1814		pF
Reverse Transfer Capacitance	C _{RSS}	1			103		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 12 V; I _D = 30 A			18		
Threshold Gate Charge	Q _{G(TH)}				2.7		nC
Gate-to-Source Charge	Q _{GS}				7.2		
Gate-to-Drain Charge	Q _{GD}				4.2		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 12 V; I _D = 30 A			38.5		nC
Gate Resistance	R _G	$T_A = 25^{\circ}C$			1.0	2	Ω
SWITCHING CHARACTERISTICS, $V_{GS} = 4.5$	5 V (Note 5)						
Turn–On Delay Time	t _{d(ON)}				13.1		
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 12 V, I _D = 15 A,			20		1
Turn–Off Delay Time	t _{d(OFF)}	$R_{\rm G} = 3.0$	Ω		22.2		ns
Fall Time	t _f				9.1		
SWITCHING CHARACTERISTICS, $V_{GS} = 10$	V (Note 5)	•					
Turn–On Delay Time	t _{d(ON)}				9.5		ns
Rise Time	tr	V _{GS} = 10 V, V _D	n = 12 V.		18.5		
Turn–Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 15 \rm A, R_{\rm G}$	= 3.0 Ω		30.3		
Fall Time	t _f	1			5		1
DRAIN-SOURCE DIODE CHARACTERISTIC	cs	•					
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = 10 A$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	T _J = 25°C		0.75	1.1	
	-				0.56		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 30 A			46.3		
Charge Time	ta				23.9		ns
Discharge Time	t _b				22.4		1
Reverse Recovery Charge	Q _{RR}				51		nC


performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300 \,\mu$ s, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

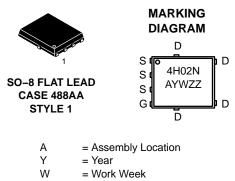
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
PACKAGE PARASITIC VALUES						
Source Inductance	L _S			0.57		nH
Drain Inductance	L _D	T _A = 25°C		0.13		nH
Gate Inductance	L _G			1.37		nH

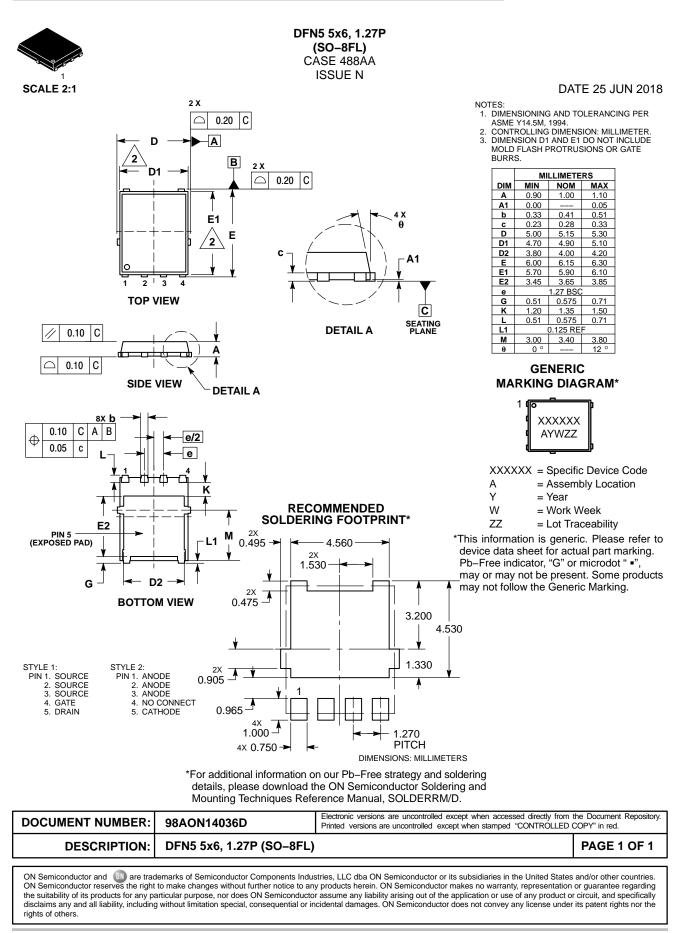
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. Pulse Test: pulse width ≤ 300 µs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFS4H02NT1G	SO8–FL (Pb-Free)	1500 / Tape & Reel
NTMFS4H02NT3G	SO8–FL (Pb-Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ZZ = Lot Traceability

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥