ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

N-Channel Power MOSFET 400 V, 5.5 Ω

Features

- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	NDD	NDT	Unit
Drain-to-Source Voltage	V _{DSS}	40	00	V
Gate-to-Source Voltage	V_{GS}	±2	20	V
Continuous Drain Current $R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$ (Note 1)	Ι _D	1.7	0.4	Α
Continuous Drain Current R _{θJC} Steady State, T _C = 100°C (Note 1)	Ι _D	1.1	0.25	Α
Power Dissipation – $R_{\theta JC}$ Steady State, $T_C = 25^{\circ}C$	P _D	39	2.0	W
Pulsed Drain Current	I _{DM}	6.9	1.6	Α
Continuous Source Current (Body Diode)	IS	1.7	0.4	Α
Single Pulse Drain-to-Source Avalanche Energy, I _D = 1 A	EAS	120		mJ
Maximum Temperature for Soldering Leads	TL	260		°C
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to	+150	°C

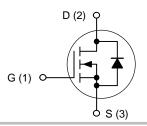
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Limited by maximum junction temperature
- 2. $I_S = 1.7 \text{ Å}, \text{ di/dt} \le 100 \text{ A/}\mu\text{s}, V_{DD} \le \text{BV}_{DSS}, T_J = +150 ^{\circ}\text{C}$

THERMAL RESISTANCE

Parameter		Symbol	Value	Unit
Junction-to-Case (Drain)	NDD02N40	$R_{\theta JC}$	3.2	°C/W
Junction-to-Ambient Steady State NDD02N40 (Note 4) NDD02N40-1 (Note 3) NDT02N40 (Note 4) NDT02N40 (Note 5)		$R_{ hetaJA}$	39 96 62 151	°C/W

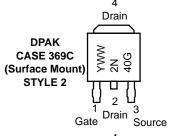
- 3. Insertion mounted
- Surface mounted on FR4 board using 1" sq. pad size
- (Cu area = 1.127" sq. [2 oz] including traces)
 5. Surface–mounted on FR4 board using minimum recommended pad size (Cu area = 0.026" sq. [2 oz]).

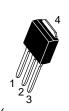


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX
400 V	5.5 Ω @ 10 V


N-Channel MOSFET



MARKING DIAGRAMS

Drain

IPAK CASE 369D (Straight Lead) STYLE 2

= Year = Work Week

2 = Device Code Gate Drain Source = Pb-Free Package

SOT-223 **CASE 318E** STYLE 3

= Assembly Location = Year W

= Work Week 2N40 = Specific Device Code = Pb-Free Package

2N40= 2 Gate Drain Source

Drain

4

AYW

(*Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Conditions	6	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 1 \text{ r}$	mA	400			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°0 I _D = 1 mA	C,		460		mV/°C
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 400 V, V _{GS} = 0 V	T _J = 25°C			1	μΑ
			T _J = 125°C			50	
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20 \text{ V}$	•			±10	μА
ON CHARACTERISTICS (Note 6)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS} = V_{GS}, I_{D} = 250$	Αμ Ο	8.0	1.6	2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25°C, I _D :	= 50 μΑ		4.6		mV/°C
Static Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.2$	22 A		4.5	5.5	Ω
Forward Transconductance	9FS	$V_{DS} = 15 \text{ V}, I_D = 0.2$	22 A		1.1		S
DYNAMIC CHARACTERISTICS							
Input Capacitance (Note 7)	C _{iss}				121		pF
Output Capacitance (Note 7)	C _{oss}	Vpo = 25 V Voo = 0 V f	– 1 MHz		16		
Reverse Transfer Capacitance (Note 7)	C _{rss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$			3		
Total Gate Charge (Note 7)	Q_{g}				5.5		nC
Gate-to-Source Charge (Note 7)	Q_{gs}				0.8		
Gate-to-Drain ("Miller") Charge (Note 7)	Q_{gd}	$V_{DS} = 200 \text{ V}, I_D = 1.7 \text{ A}, V_D$	' _{GS} = 10 V		1.0		
Plateau Voltage	V_{GP}				3.1		V
Gate Resistance	R_{g}				8.7		Ω
RESISTIVE SWITCHING CHARACTER	ISTICS (Note 8))					
Turn-on Delay Time	t _{d(on)}				5		ns
Rise Time	t _r	$V_{DD} = 200 \text{ V}, I_D = 1$.7 A,		7		
Turn-off Delay Time	t _{d(off)}	$V_{DD} = 200 \text{ V}, I_D = 1$ $V_{GS} = 10 \text{ V}, R_G = 0$	Ω		14		
Fall Time	t _f				4		
SOURCE-DRAIN DIODE CHARACTER	RISTICS		-				-
Diode Forward Voltage	V_{SD}	T _J = 25°C			0.9	1.6	V
		$I_S = 1.7 A, V_{GS} = 0 V$	T _J = 100°C		0.8		
Reverse Recovery Time	t _{rr}				146		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } V_{DD} = 30 \text{ V, } I_{S} = 1.7 \text{ A,}$ $d_{i}/d_{t} = 100 \text{ A/}\mu\text{s}$			37		1
Discharge Time	t _b				109		1
Reverse Recovery Charge	Q _{rr}				260		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 6. Pulse Width \leq 380 μ s, Duty Cycle \leq 2%. 7. Guaranteed by design.
- 8. Switching characteristics are independent of operating junction temperatures.

ORDERING INFORMATION

Device	Package	Shipping [†]
NDD02N40-1G	IPAK (Pb-Free, Halogen Free)	75 Units / Rail
NDD02N40T4G	DPAK (Pb–Free, Halogen Free)	2500 / Tape & Reel
NDT02N40T1G	SOT–223 (Pb–Free, Halogen Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

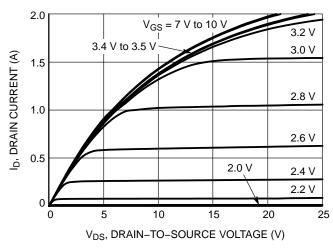


Figure 1. On-Region Characteristics

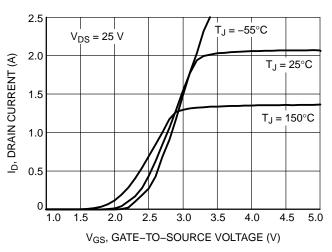


Figure 2. Transfer Characteristics



Figure 3. On–Resistance vs. Gate–to–Source Voltage

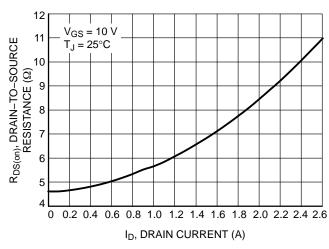


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

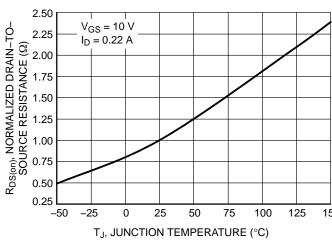


Figure 5. On–Resistance Variation with Temperature

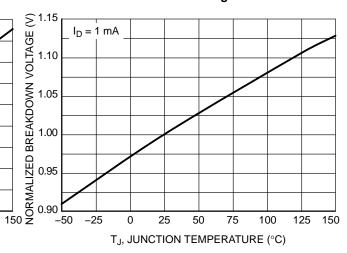


Figure 6. Normalized BVDSS with Temperature

TYPICAL CHARACTERISTICS

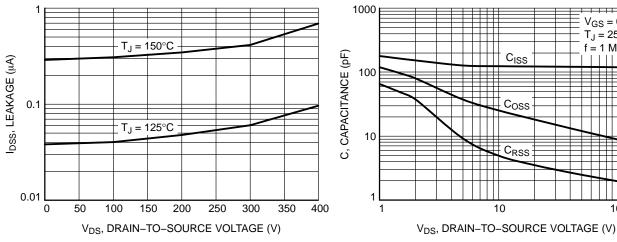


Figure 7. Drain-to-Source Leakage Current vs. Voltage

 $V_{GS} = 0 V$ $T_J = 25^{\circ}C$

f = 1 MHz

100

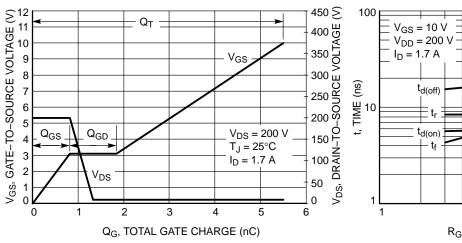


Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

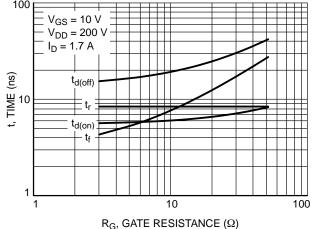


Figure 10. Resistive Switching Time Variation vs. Gate Resistance

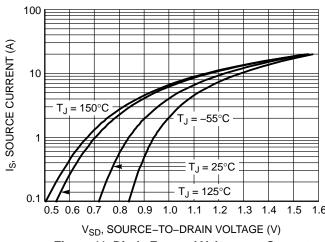


Figure 11. Diode Forward Voltage vs. Current

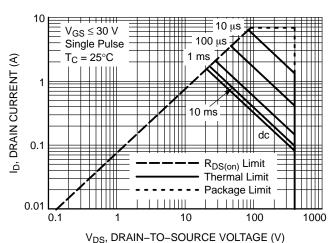


Figure 12. Maximum Rated Forward Biased Safe Operating Area for NDD02N40

TYPICAL CHARACTERISTICS

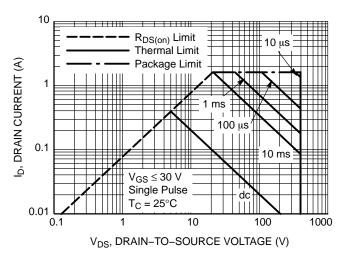


Figure 13. Maximum Rated Forward Biased Safe Operating Area for NDT02N40

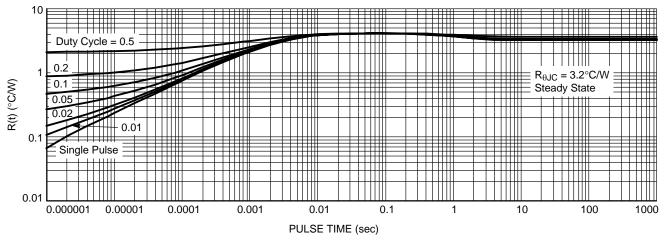
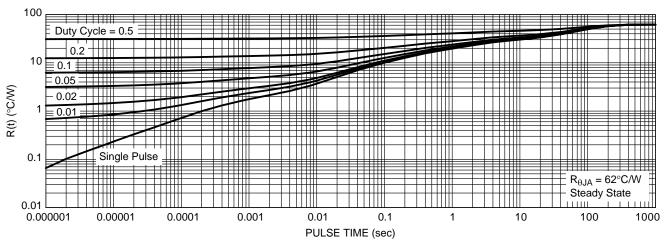
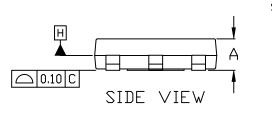
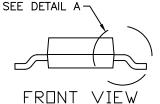


Figure 14. Thermal Impedance (Junction-to-Case) for NDD02N40

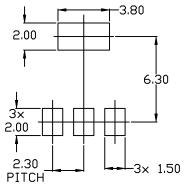




Figure 15. Thermal Impedance (Junction-to-Ambient) for NDT02N40



SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



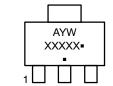
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
C	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е		2,30 BSC	,	
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

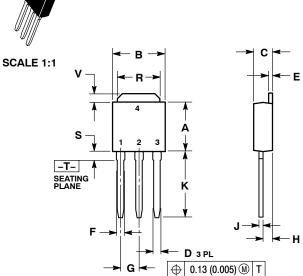
XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

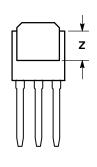
MT2

SOURCE

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

EMITTER

COLLECTOR

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

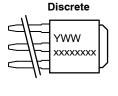
STYLE 4: PIN 1. CATHODE

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE


STYLE 7: PIN 1. GATE 2. COLLECTOR

3. EMITTER

COLLECTOR

ANODE
 GATE

4. ANODE

xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot

Υ = Year WW = Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

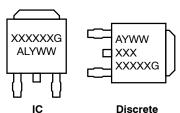
DETAIL A ROTATED 90° CW

STYLE 2:

STYLE 1:

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F**

DATE 21 JUL 2015


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code

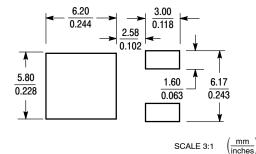
= Assembly Location Α

L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

SCALE 1:1 Α С -h3∙ В L3 z Ո DETAIL A Ш NOTE 7 C-**BOTTOM VIEW** b2 e SIDE VIEW | + 0.005 (0.13) M C **TOP VIEW** Z Ħ L2 GAUGE C SEATING **BOTTOM VIEW** Α1 ALTERNATE CONSTRUCTIONS

PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. BASE 2. COLLECTOR 3. EMITTER PIN 1. GATE 2. DRAIN PIN 1. ANODE 2. CATHODE 2. ANODE 3. GATE SOURCE 3. ANODE 4. CATHODE 4. COLLECTOR 4. DRAIN 4. ANODE 4. ANODE STYLE 6: STYLE 7: STYLE 8: STYLE 9: STYLE 10: PIN 1. MT1 2. MT2 PIN 1. GATE 2. COLLECTOR PIN 1. N/C 2. CATHODE PIN 1. ANODE 2. CATHODE PIN 1. CATHODE 2. ANODE 3. GATE 4. MT2 3. EMITTER 4. COLLECTOR 3. ANODE 4. CATHODE 3. RESISTOR ADJUST 4. CATHODE 3. CATHODE 4. ANODE


STYLE 4:

PIN 1. CATHODE

STYLE 5:

STYLE 3:

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative