

VN5050AJ-E

Single channel high side driver with analog current sense for automotive applications

Features

Max supply voltage	V _{CC}	41 V
Operating voltage range	V _{CC}	4.5 to 36V
Max On-State resistance	R _{ON}	$50 \text{ m}\Omega$
Current limitation (typ)	I _{LIMH}	16.5 A
Off state supply current	۱ _S	2 µA

- General features
 - Inrush current active management by power limitation
 - Very low stand-by current
 - 3.0V CMOS compatible input
 - Optimized electromagnetic emission
 - Very low electromagnetic susceptibility
 - In compliance with the 2002/95/EC European directive
- Diagnostic functions
 - Proportional load current sense
 - High current sense precision for wide range currents
 - Current sense disable
 - Thermal shutdown indication
 - Very low current sense leakage
- Protection
 - Undervoltage shut-down
 - Overvoltage clamp
 - Load current limitation
 - Self limiting of fast thermal transients
 - Protection against loss of ground and loss of V_{CC}
 - Thermal shut down

- Reverse battery protection (see Application schematic)
- Electrostatic discharge protection

Application

- All types of resistive, inductive and capacitive loads
- Suitable as LED driver

Description

The VN5050AJ-E is a monolithic device made using STMicroelectronics VIPower technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

This device integrates an analog current sense which delivers a current proportional to the load current (according to a known ratio) when CS_DIS is driven low or left open.

When CS_DIS is driven high, the CURRENT SENSE pin is in a high impedance condition. Output current limitation protects the device in overload condition. In case of long overload duration, the device limits the dissipated power to safe level up to thermal shut-down intervention. Thermal shut-down with automatic restart allows the device to recover normal operation as soon as fault condition disappears.

Table 1.	Device summary
----------	----------------

Package	Order	codes
Fachage	Tube	Tape and Reel
PowerSSO-12	VN5050AJ-E	VN5050AJTR-E

September 2013	Rev 7

Contents

1	Bloc	ock diagram and pin description			
2	Elec	trical specifications			
	2.1	Absolute maximum ratings			
	2.2	Thermal data			
	2.3	Electrical characteristics			
	2.4	Electrical characteristics curves 18			
3	Арр	lication information			
	3.1	GND protection network against reverse battery			
		3.1.1 Solution 1: resistor in the ground line (RGND only) 21			
		3.1.2 Solution 2: diode (D _{GND}) in the ground line			
	3.2	Load dump protection 22			
	3.3	MCU I/O protection 22			
	3.4	Maximum demagnetization energy (VCC = 13.5V)			
4	Pacl	kage and PCB thermal data 24			
	4.1	PowerSSO-12 [™] thermal data			
5	Pacl	kage information			
	5.1	ECOPACK [®] packages			
	5.2	Package mechanical data 27			
	5.3	Packing information			
6	Revi	ision history			

List of tables

Table 1.	Device summary	. 1
Table 2.	Pin function	. 5
Table 3.	Suggested connections for unused and N.C. pins	. 6
Table 4.	Absolute maximum ratings	. 7
Table 5.	Thermal data	. 8
Table 6.	Power section	. 9
Table 7.	Switching (V _{CC} =13V, T_j =25°C)	. 9
Table 8.	Logic input	10
Table 9.	Protection and diagnostics	10
Table 10.	Current sense (8V <v<sub>CC<16V)</v<sub>	11
Table 11.	Truth table	15
Table 12.	Electrical transient requirements	16
Table 13.	Thermal parameter	
Table 14.	PowerSSO-12 [™] mechanical data	28
Table 15.	Document revision history	30

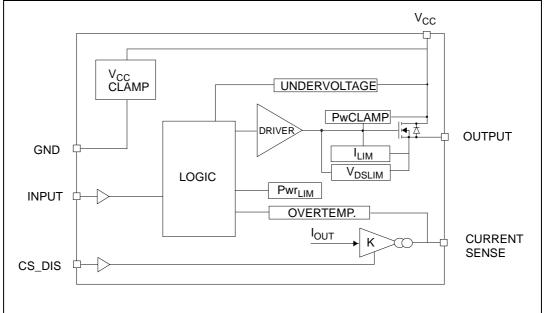
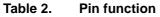

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	7
Figure 4.	Current sense delay characteristics	2
Figure 5.	Output voltage drop limitation	2
Figure 6.	Delay response time between rising edge of ouput current and rising edge of current sense)
	(CS enabled)	3
Figure 7.	Switching characteristics	
Figure 8.	I _{OUT} /I _{SENSE} Vs. I _{OUT}	
Figure 9.	Maximum current sense ratio drift vs load current 14	4
Figure 10.	Waveforms	7
Figure 11.	Off state output current	8
Figure 12.	High level input current	8
Figure 13.	Input clamp voltage	8
Figure 14.	Input low level	8
Figure 15.	Input high level	8
Figure 16.	Input hysteresis voltage	8
Figure 17.	On state resistance vs. Tcase	9
Figure 18.	On state resistance vs. VCC	9
Figure 19.	Undervoltage shutdown	
Figure 20.	Turn-On voltage slope	9
Figure 21.	ILIMH Vs. Tcase	9
Figure 22.	Turn-Off voltage slope	9
Figure 23.	CS_DIS high level voltage	0
Figure 24.	CS_DIS clamp voltage	0
Figure 25.	CS_DIS low level voltage	0
Figure 26.	Application schematic	
Figure 27.	Maximum turn Off current versus inductance	3
Figure 28.	PowerSSO-12 [™] PC Board	4
Figure 29.	Rthj-amb Vs. PCB copper area in open box free air condition	
Figure 30.	PowerSSO-12 [™] thermal impedance junction ambient single pulse	
Figure 31.	Thermal fitting model of a single channel HSD in PowerSSO-12 [™]	5
Figure 32.	PowerSSO-12 [™] package dimensions	7
Figure 33.	PowerSSO-12 [™] tube shipment (no suffix)	9
Figure 34.	PowerSSO-12 [™] tape and reel shipment (suffix "TR")	9


4/31

1 Block diagram and pin description

Figure 1. Block diagram

Name	Name Function	
V _{CC}	Battery connection.	
OUTPUT	Power output.	
GND	Ground connection. Must be reverse battery protected by an external diode/resistor network.	
INPUT	Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state.	
CURRENT SENSE	Analog current sense pin, delivers a current proportional to the load current.	
CS_DIS	Active high CMOS compatible pin, to disable the current sense pin.	

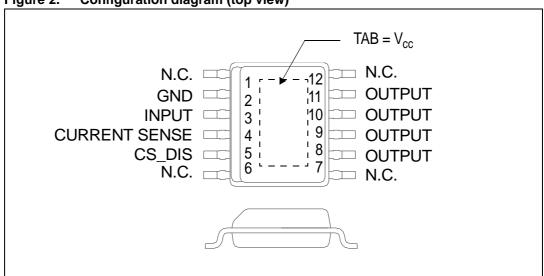


Figure 2. Configuration diagram (top view)

Note:

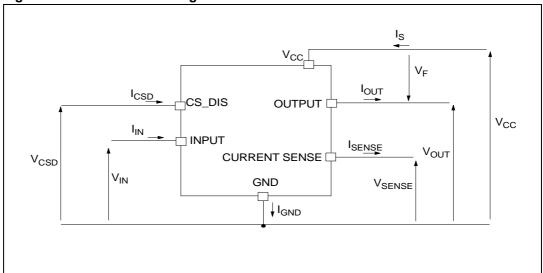

The above pin configuration reflects the changes notified with PCN-APG-BOD/07/2886. The new pinout is backaward compatible with existing PCB layouts where pins #1 and #6 are connected to Vcc and/or pins #7 and 12 are connected to OUTPUT. For new PCB designs, these pins should be left unconnected.

Table 3. Suggested connections for unused and N.C. pins

Connection / Pin	Current Sense	N.C.	Output	Input	CS_DIS
Floating	N.R.	Х	Х	Х	Х
To ground	Through $1k\Omega$ resistor	Х	N.R. ⁽¹⁾	Through 10kΩ resistor	Through 10kΩ resistor

1. Not recommended.

2 Electrical specifications

Figure 3. Current and voltage conventions

Note:

 $V_F = V_{OUT} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document.

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse DC supply voltage	0.3	V
- I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	DC output current		А
- I _{OUT}	Reverse DC output current	30	А
I _{IN}	DC input current	-1 to 10	mA
I _{CSD}	DC current sense disable input current	-1 to 10	mA
-I _{CSENSE}	DC reverse CS pin current	200	mA
Vaaruar	Current sense maximum voltage	V _{CC} -41	V
V _{CSENSE}	Current sense maximum vonage	+V _{CC}	V
E _{MAX}	Maximum switching energy (single pulse) (L= 3mH; R _L =0Ω; V _{bat} =13.5V; T _{jstart} =150°C; I _{OUT} = I _{limL} (<i>Typ.</i>))	104	mJ

 Table 4.
 Absolute maximum ratings

	, account maximum rainige (commuted)		
Symbol	Parameter	Value	Unit
V _{ESD}	Electrostatic discharge (Human Body Model: R=1.5kΩ; C=100pF)		
	- INPUT	4000	V
	- CURRENT SENSE	2000	V
	- CS_DIS	4000	V
	- OUTPUT	5000	V
	- V _{CC}	5000	V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Тj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	°C

 Table 4.
 Absolute maximum ratings (continued)

2.2 Thermal data

Table	5.	Thermal	data

Symbol	Parameter	Max value	Unit
R _{thj-case}	Thermal resistance junction-case (MAX)	2.7	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (MAX)	See <i>Figure 29</i> .	°C/W

2.3 Electrical characteristics

Values specified in this section are for 8V < VCC < 36V; $-40^{\circ}C < Tj < 150^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4.5	13	36	V
V _{USD}	Undervoltage shutdown			3.5	4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
R _{ON}	On state resistance	I _{OUT} = 2A; T _j =25°C I _{OUT} = 2A; T _j =150°C I _{OUT} = 2A; V _{CC} =5V; T _j =25°C			50 100 65	mΩ mΩ mΩ
V _{clamp}	Clamp voltage	I _S = 20mA	41	46	52	V
I _S	Supply current	Off State; V_{CC} =13V; T_j =25°C; V_{IN} = V_{OUT} = V_{SENSE} = V_{CSD} =0V On State; V_{CC} =13V; V_{IN} =5V; I_{OUT} =0A		2 ⁽¹⁾ 1.5	5 ⁽¹⁾ 3	μA mA
I _{L(off)}	Off state output current	V _{IN} =V _{OUT} =0V; V _{CC} =13V; T _j =25°C V _{IN} =V _{OUT} =0V; V _{CC} =13V; T _j =125°C	0 0	0.01	3 5	μA
V _F	Output - V _{CC} diode voltage	-I _{OUT} = 2A; T _j = 150°C			0.7	V

Table 6.Power section

1. PowerMOS leakage included.

Table 7. Switching (V_{CC}=13V, T_i=25°C)

	3, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,] /				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	R_L = 6.5 Ω (see <i>Figure</i> 7.)		20		μs
t _{d(off)}	Turn-off delay time	$R_L = 6.5\Omega$ (see <i>Figure 7.</i>)		40		μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	R _L = 6.5Ω		See Figure 20		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	R _L = 6.5Ω		See Figure 22		V/µs
W _{ON}	Switching energy losses during tw _{on}	$R_L = 6.5\Omega$ (see <i>Figure 7</i> .)		0.20		mJ
W _{OFF}	Switching energy losses during tw _{off}	$R_L = 6.5\Omega$ (see <i>Figure 7.</i>)		0.3		mJ

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input low level voltage				0.9	V
Ι _{ΙL}	Low level input current	V _{IN} = 0.9V	1			μA
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.25			V
V _{ICL}	Input clamp voltage	I _{IN} = 1mA I _{IN} = -1mA	5.5	-0.7	7	V V
V _{CSDL}	CS_DIS low level voltage				0.9	V
I _{CSDL}	Low level CS_DIS current	V _{CSD} = 0.9V	1			μA
V _{CSDH}	CS_DIS high level voltage		2.1			V
I _{CSDH}	High level CS_DIS current	V _{CSD} = 2.1V			10	μA
V _{CSD(hyst)}	CS_DIS hysteresis voltage		0.25			V
V _{CSCL}	CS_DIS clamp voltage	I _{CSD} = 1mA I _{CSD} = -1mA	5.5	-0.7	7	V V

Table 8. Logic input

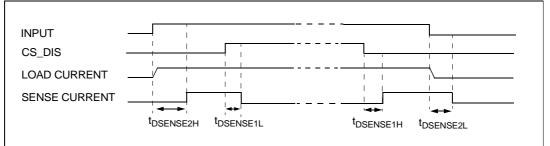
Table 9. Protection and diagnostics⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{limH}	DC Short circuit current	V _{CC} = 13V 5V <v<sub>CC<36V</v<sub>	12	16.5	23 23	A A
I _{limL}	Short circuit current during thermal cycling	V _{CC} =13V T _R <t<sub>j<t<sub>TSD</t<sub></t<sub>		7		А
T _{TSD}	Shutdown temperature		150	175	200	°C
Τ _R	Reset temperature		T _{RS} + 1	T _{RS} + 5		°C
T _{RS}	Thermal reset of STATUS		135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} -T _R)			7		°C
V _{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 2A; V _{IN} = 0; L= 6mH	V _{CC} -41	V _{CC} -46	V _{CC} -52	V
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.1A; T _j = -40°C+150°C (see <i>Figure 5</i> .)		25		mV

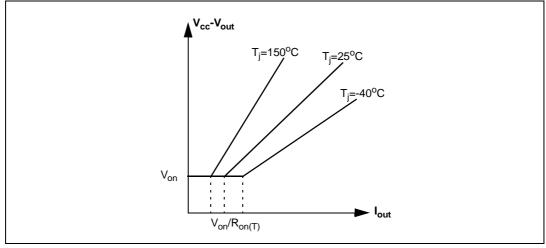
 To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
K ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05A; V _{SENSE} =0.5V; V _{CSD} =0V; T _j = -40°C150°C	1100	2440	3480	
K ₁	I _{OUT} /I _{SENSE}	I_{OUT} =1A; V_{SENSE} =0.5V; V_{CSD} =0V; T_{j} = -40°C150°C I_{OUT} = 1A; V_{SENSE} = 0.5V; V_{CSD} = 0V; T_{j} = 25°C150°C	1600 1630			
dK ₁ /K ₁ ⁽¹⁾	Current sense ratio drift	I _{OUT} =1A; V _{SENSE} = 0.5V; V _{CSD} =0V; T _J =-40 °C to 150 °C	-10		+10	%
K ₂	I _{OUT} /I _{SENSE}	$\begin{split} I_{OUT} &= 2A; \ V_{SENSE} = 4V; \ V_{CSD} = 0V; \\ T_{j} &= -40^{\circ}C150^{\circ}C \\ I_{OUT} &= 2A; \ V_{SENSE} = 4V; \ V_{CSD} = 0V; \\ T_{j} &= 25^{\circ}C150^{\circ}C \end{split}$	1770 1800	2000 2000	2310 2200	
dK ₂ /K ₂ ⁽¹⁾	Current sense ratio drift	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{CSD} = 0V; T _J = -40 °C to 150 °C	-6		+6	%
K ₃	I _{OUT} /I _{SENSE}	I_{OUT} = 4A; V_{SENSE} = 4V; V_{CSD} = 0V; T_j = -40°C150°C I_{OUT} = 4A; V_{SENSE} = 4V; V_{CSD} = 0V; T_j = 25°C150°C	1860 1870			
dK ₃ /K ₃ ⁽¹⁾	Current sense ratio drift	I _{OUT} = 4 A; V _{SENSE} = 4 V; V _{CSD} =0V; T _J =-40 °C to 150 °C	-3		+3	%
ISENSEO	Analog sense leakage current	$\begin{split} &I_{OUT} = 0A; V_{SENSE} = 0V; \\ &V_{CSD} = 5V; V_{IN} = 0V; T_j = -40^{\circ}C150^{\circ}C \\ &V_{CSD} = 0V; V_{IN} = 5V; T_j = -40^{\circ}C150^{\circ}C \\ &I_{OUT} = 2A; V_{SENSE} = 0V; \\ &V_{CSD} = 5V; V_{IN} = 5V; T_j = -40^{\circ}C150^{\circ}C \end{split}$	0 0		1 2 1	μΑ μΑ μΑ
I _{OL}	Openload ON state current detection threshold	V _{IN} = 5V, I _{SENSE} = 5 μA	4		20	mA
V _{SENSE}	Max analog sense output voltage	I _{OUT} =2A; V _{CSD} =0V	5			V
V _{SENSEH}	Analog sense output voltage in overtemperature condition	V _{CC} =13V; R _{SENSE} =10KΩ		9		V
I _{SENSEH}	Analog sense output current in overtemperature condition	V _{CC} =13V, V _{SENSE} =5V		8		mA

Table 10.Current sense (8V<V_{CC}<16V)</th>



Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{DSENSE1H}	Delay response time from falling edge of CS_DIS pin	V _{SENSE} <4V, 0.5A <lout<4a I_{SENSE}=90% of I_{SENSEmax} (see <i>Figure 4</i>.)</lout<4a 		50	100	μs
t _{DSENSE1L}	Delay response time from rising edge of CS_DIS pin	V _{SENSE} <4V, 0.5A <lout<4a I_{SENSE}=10% of I_{SENSEmax} (see <i>Figure 4</i>.)</lout<4a 		5	20	μs
t _{DSENSE2H}	Delay response time from rising edge of INPUT pin	V _{SENSE} <4V, 0.5A <lout<4a I_{SENSE}=90% of I_{SENSE max} (see <i>Figure 4</i>.)</lout<4a 		80	250	μs
$\Delta t_{DSENSE2H}$	Delay response time between rising edge of output current and rising edge of current sense	$V_{SENSE} < 4V,$ $I_{SENSE} = 90\%$ of $I_{SENSEMAX,}$ $I_{OUT} = 90\%$ of I_{OUTMAX} $I_{OUTMAX}=2A$ (see <i>Figure 6</i>)			65	□□µ s
t _{DSENSE2L}	Delay response time from falling edge of INPUT pin	V _{SENSE} <4V, 0.5A <lout<4a I_{SENSE}=10% of I_{SENSE max} (see <i>Figure 4</i>.)</lout<4a 		100	250	μs


Table 10. Current sense (8V<V_{CC}<16V) (continued)

1. Parameter guaranteed by design; it is not tested.

Figure 4. Current sense delay characteristics

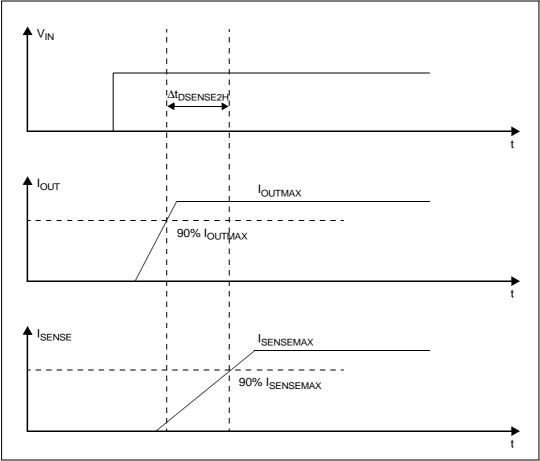
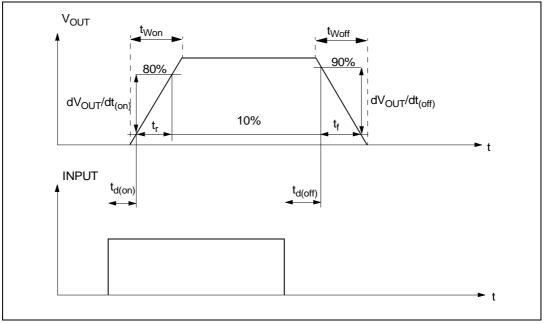



Figure 6. Delay response time between rising edge of ouput current and rising edge of current sense (CS enabled)

Figure 7. Switching characteristics

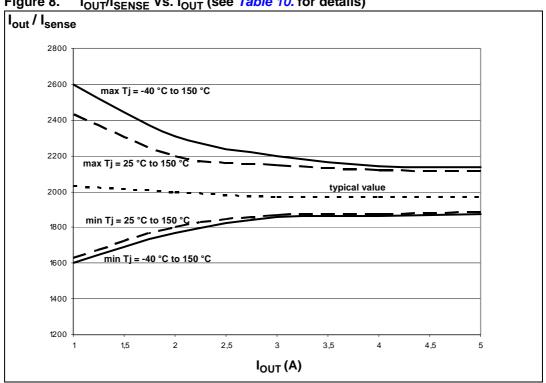
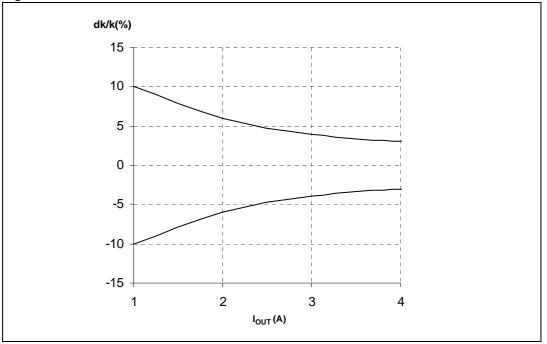



Figure 8. I_{OUT}/I_{SENSE} Vs. I_{OUT} (see *Table 10.* for details)

Figure 9. Maximum current sense ratio drift vs load current

Parameter guaranteed by design; it is not tested.

Table 11. Truth table

Conditions	Input	Output	Sense (V _{CSD} =0V) ⁽¹⁾
Normal operation	L H	L H	0 Nominal
Overtemperature	L H	L	0 V _{SENSEH}
Undervoltage	L H	L	0 0
Short circuit to GND (R₅c≤10 mΩ)	L H H	L L L	0 0 if $T_j < T_{TSD}$ V _{SENSEH} if $T_j > T_{TSD}$
Short circuit to V _{CC}	L H	H H	0 < Nominal
Negative output voltage clamp	L	L	0

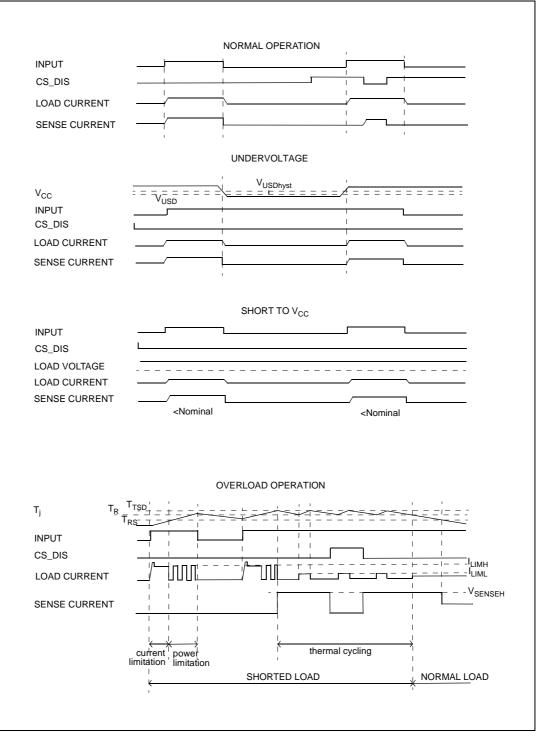
1. If the V_{CSD} is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

ISO 7637-2: 2004(E)	Test levels		Number of	Burst cycle/pulse		Delays and		
Test pulse	ш	IV	test times					
1	-75V	-100V	5000 pulses	0.5 s	5 s	2 ms, 10 Ω		
2a	+37V	+50V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω		
3a	-100V	-150V	1h	90 ms	100 ms	0.1 μs, 50 Ω		
3b	+75V	+100V	1h	90 ms	100 ms	0.1 μs, 50 Ω		
4	-6V	-7V	1 pulse			100 ms, 0.01 Ω		
5b ⁽²⁾	+65V	+87V	1 pulse			400 ms, 2 Ω		

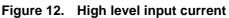
 Table 12.
 Electrical transient requirements

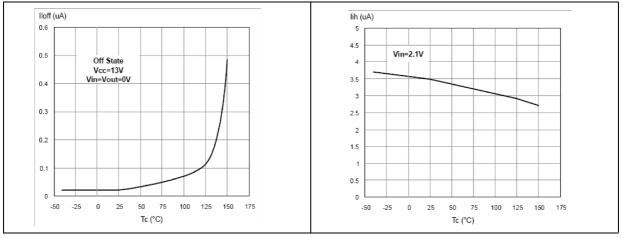
ISO 7637-2: 2004(E)	Test level results ⁽¹⁾				
Test pulse	III	IV			
1	С	С			
2a	С	С			
За	С	С			
3b	С	С			
4	С	С			
5b ⁽²⁾	С	С			

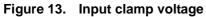
1. The above test levels must be considered referred to Vcc = 13.5V except for pulse 5b.

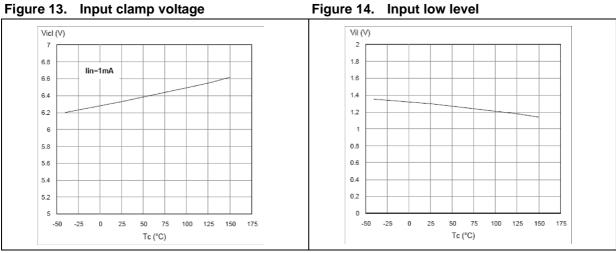

2. Valid in case of external load dump clamp: 40V maximum referred to ground.

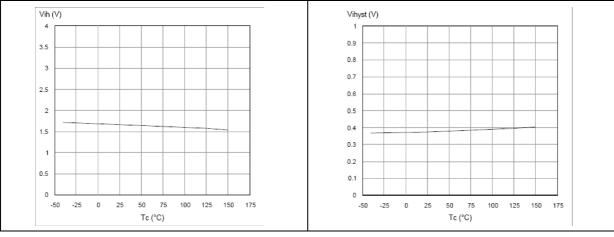
Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

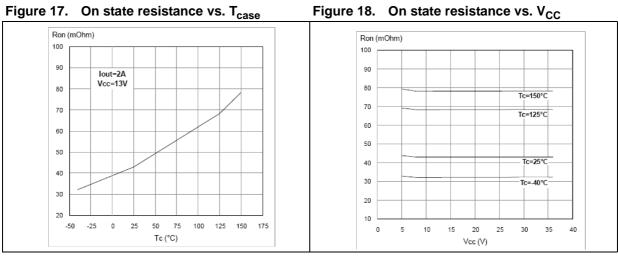

16/31


Figure 10. Waveforms




Electrical characteristics curves 2.4





18/31

Figure 16. Input hysteresis voltage

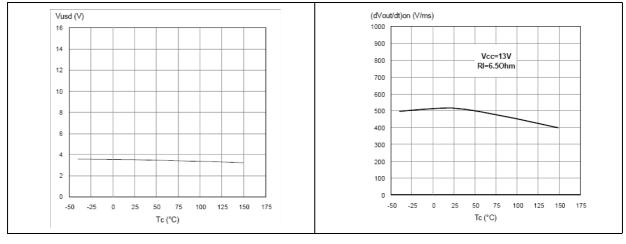
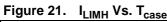
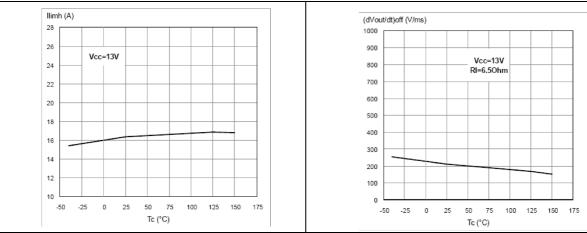
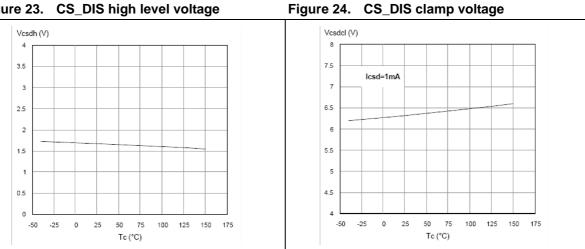
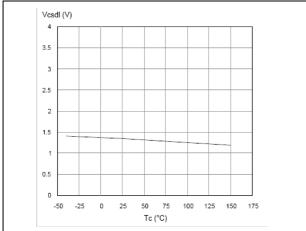
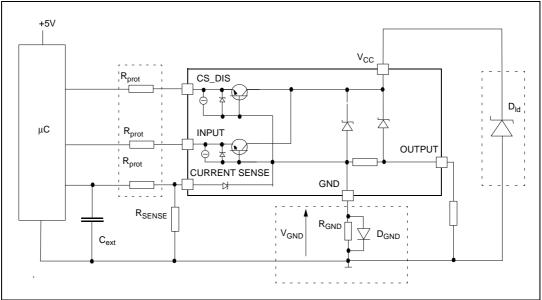




Figure 20. Turn-On voltage slope

Figure 22. Turn-Off voltage slope


Figure 23. CS_DIS high level voltage

3 Application information

3.1 GND protection network against reverse battery

This section provides two solutions for implementing a ground protection network against reverse battery.

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following show how to dimension the R_{GND} resistor:

- 1. $R_{GND} \leq 600 \text{mV} / (I_{S(on)max})$
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{GND}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in R_{GND} (when V_{CC} <0 during reverse battery situations) is:

 $P_{D} = (-V_{CC})^{2} / R_{GND}$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that, if the microprocessor ground is not shared by the device ground, then the R_{GND} will produce a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation requires the use of a large resistor, or several devices have to share the same resistor, then ST suggests using solution 2 below.

3.1.2 Solution 2: diode (D_{GND}) in the ground line

Note that a resistor (R_{GND} =1k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} maximum DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than those shown in the ISO T/R 7637/1 table.

3.3 MCU I/O protection

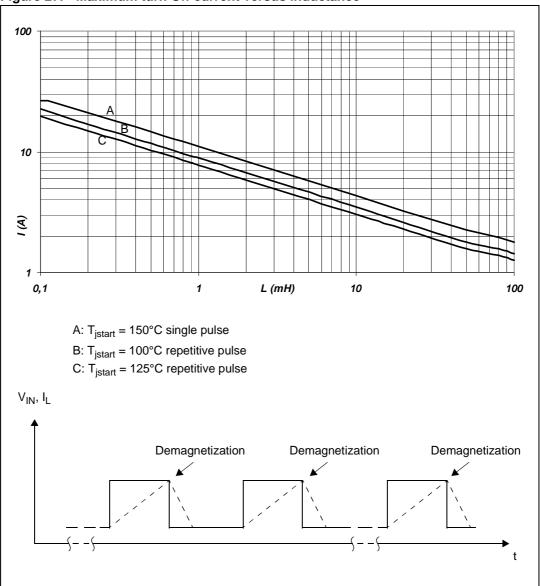
If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the μ C I/O pins from latching up.

The value of these resistors is a compromise between the leakage current of μ C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of μ C I/Os:

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Equation 1:

For the following conditions:

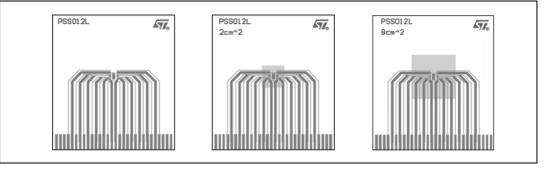

$$\begin{split} &V_{CCpeak} = -\ 100V\\ &I_{latchup} \geq 20mA\\ &V_{OH\mu C} \geq 4.5V\\ &5k\Omega \leq R_{prot} \leq 180k\Omega. \end{split}$$

Recommended values are:

 $R_{prot} = 10k\Omega, C_{EXT} = 10nF$

3.4 Maximum demagnetization energy ($V_{CC} = 13.5V$)

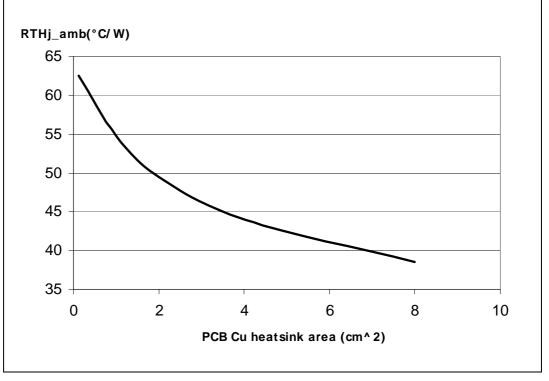
Note: Values are generated with $R_L = 0 \Omega$. In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.



VN5050AJ-E

4 Package and PCB thermal data

4.1 PowerSSO-12[™] thermal data


Figure 28. PowerSSO-12[™] PC Board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB: Double layer, Thermal Vias, FR4 area= 77mm x 86mm, PCB thickness=1.6mm, Cu thickness=70 µm (front and back side), Copper areas: from minimum pad lay-out to 8cm²).

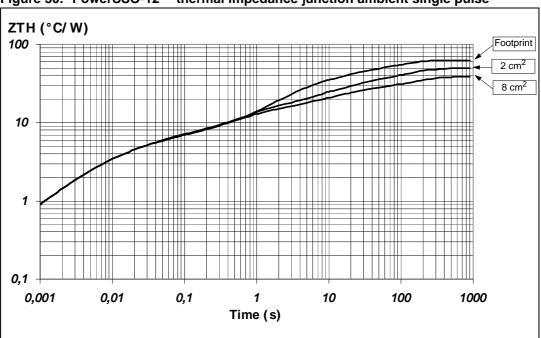


Figure 30. PowerSSO-12[™] thermal impedance junction ambient single pulse

Equation 2: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp}(1 - \delta)$ where $\delta = t_P/T$

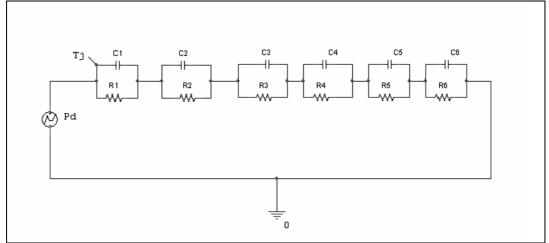


Figure 31. Thermal fitting model of a single channel HSD in PowerSSO-12[™] ^(a)

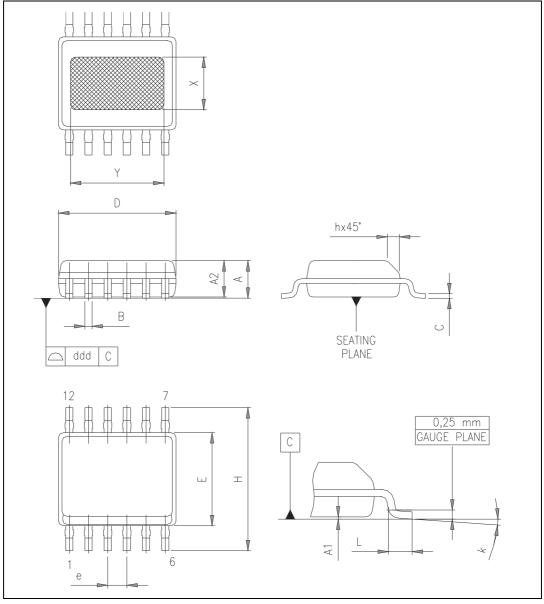
a. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Area/island (cm ²)	Footprint	2	8
R1 (°C/W)	0.7		
R2 (°C/W)	2.8		
R3 (°C/W)	3		
R4 (°C/W)	8	8	7
R5 (°C/W)	22	15	10
R6 (°C/W)	26	20	15
C1 (W.s/°C)	0.001		
C2 (W.s/°C)	0.0025		
C3 (W.s/°C)	0.0166		
C4 (W.s/°C)	0.2	0.1	0.1
C5 (W.s/°C)	0.27	0.8	1
C6 (W.s/°C)	3	6	9

Table 13. Thermal parameter

26/31

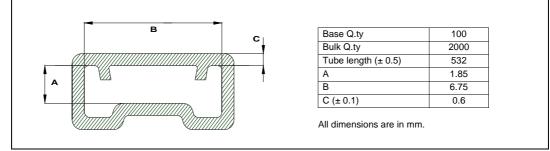
5 Package information

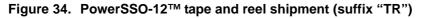

5.1 ECOPACK[®] packages

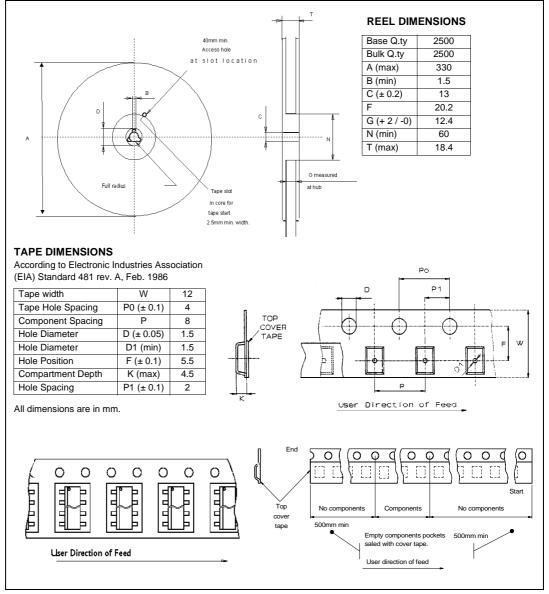
In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second-level interconnect. The category of Second-Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97.

The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

5.2 Package mechanical data


Symbol	Millimeters		
	Min.	Тур.	Max.
А	1.250		1.620
A1	0.000		0.100
A2	1.100		1.650
В	0.230		0.410
С	0.190		0.250
D	4.800		5.000
E	3.800		4.000
е		0.800	
Н	5.800		6.200
h	0.250		0.500
L	0.400		1.270
k	0°		8°
Х	2.200		2.800
Y	2.900		3.500
ddd			0.100


Table 14. PowerSSO-12[™] mechanical data


28/31

5.3 Packing information

Figure 33. PowerSSO-12[™] tube shipment (no suffix)

6 Revision history

Table 15.	Document revision history
-----------	---------------------------

Date	Revision	Changes
24-Jan-2006	1	Initial release.
Jul-2006	2	Minor updates.
06-Feb-2007	3	Document reformatted. <i>Table 14: PowerSSO-12™ mechanical data</i> , X and Y values (slug dimensions) updated. <i>Table 10: Current sense (8V<v<sub>CC<16V)</v<sub></i> t _{DSENSE2H} entry updated. <i>Figure 27: Maximum turn Off current versus inductance</i> and <i>Table 13: Thermal parameter</i> updated.
13-Sep-2007	4	Document reformatted and restructured. Contents and lists of tables and figures added. <i>Figure 2: Configuration diagram (top view)</i> updated: pins 1-6-7-12 left unconnected (N.C). <i>Table 4: Absolute maximum ratings</i> : updated EMAX entries. <i>Table 10</i> : added dk1/k1, dk2/k2, dk3/k3, $\Delta t_{DSENSE2H}$. Added <i>Figure 6: Delay response time between rising edge of ouput current and rising edge of current sense (CS enabled)</i> . Updated <i>Figure 8: I_{OUT}/I_{SENSE} Vs. I_{OUT} (see Table 10. for details)</i> . Added <i>Figure 9: Maximum current sense ratio drift vs load current</i> . <i>Table 12: Electrical transient requirements</i> : updated test level values III and IV for test pulse 5b and notes. Corrected <i>Figure 30: PowerSSO-12TM thermal impedance junction ambient single pulse</i> .
7-Dec-2007	5	 Figure 2: Configuration diagram (top view): added note. Updated Table 10: Current sense (8V<v<sub>CC<16V):</v<sub> changed t_{DSENSE2H} max value from 300 µs to 250µs. added I_{OL} parameter. Updated Section 4.1: PowerSSO-12TM thermal data: changed Figure 29: Rthj-amb Vs. PCB copper area in open box free air condition. changed Figure 30: PowerSSO-12TM thermal impedance junction ambient single pulse. updated Table 13: Thermal parameter: R1 value changed from 0.6 to 0.7 °C/W. R3 value changed from 10 /10 /9 to 8 /8 /7 °C/W. C3 value changed from 0.022 to 0.0166 W.s/°C
12-Feb-2008	6	Corrected typing error in <i>Table 10: Current sense (8V</i> < V_{CC} <16V): changed I _{OL} test condition from V _{IN} = 0V to V _{IN} = 5V.
23-Sep-2013	7	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

